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THE EXAMINATION 
XXV INTERNATIONAL PHYSICS OLYMPIAD 

BEIJING, PERPLE’S REPUBLIC CHINA 
THEORETICAL COMPETITION 

July 13, 1994 
Time available: 5 hours 
READ THIS FIRST! 

 
INSTRUCTIONS: 
1. Use only the ball pen provided. 
2. Your graphs should be drawn on the answer sheets attached to the problem. 
3. Your solutions should be written on the sheets of paper attached to the problems. 
4. Write at the top of the first page of each problem: 

● The total number of pages in your solution to the problem 

● Your name and code number 



 2

Theoretical Problem 1 

RELATIVISTIC PARTICLE 

In the theory of special relativity the relation between energy E and momentum P 
or a free particle with rest mass m0 is 

242
0

22 mccmcpE =+=  

When such a particle is subject to a conservative force, the total energy of the 

particle, which is the sum of 42
0

22 cmcp +  and the potential energy, is conserved. If 

the energy of the particle is very high, the rest energy of the particle can be ignored 
(such a particle is called an ultra relativistic particle). 

1) consider the one dimensional motion of a very high energy particle (in which 
rest energy can be neglected) subject to an attractive central force of constant 
magnitude f. Suppose the particle is located at the centre of force with initial 
momentum p0 at time t=0. Describe the motion of the particle by separately 
plotting, for at least one period of the motion: x against time t, and momentum 
p against space coordinate x. Specify the coordinates of the “turning points” in 
terms of given parameters p0 and f. Indicate, with arrows, the direction of the 
progress of the mothon in the (p, x) diagram. There may be short intervals of 
time during which the particle is not ultrarelativistic. However, these should be 
neglected. 
Use Answer Sheet 1. 

2) A meson is a particle made up of two quarks. The rest mass M of the meson is 
equal to the total energy of the two-quark system divided by c2. 

Consider a one--dimensional model for a meson at rest, in which the two 
quarks are assumed to move along the x-axis and attract each other with a force 
of constant magnitude f It is assumed they can pass through each other freely. 
For analysis of the high energy motion of the quarks the rest mass of the quarks 
can be neglected. At time t=0 the two quarks are both at x=0. Show separately 
the motion of the two quarks graphically by a (x, t) diagram and a (p, x) 
diagram, specify the coordinates of the “turning points” in terms of M and f, 
indicate the direction of the process in your (p, x)  diagram, and determine the 
maximum distance between the two quarks. 
Use Answer Sheet 2. 

3) The reference frame used in part 2 will be referred to as frame S, the Lab frame, 
referred to as S, moves in the negative x-direction with a constant velocity 
v=0.6c. the coordinates in the two reference frames are so chosen that the point 
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x=0 in S coincides with the point 0=′x  in S ′′  at time 0=′= tt . Plot the 
motion of the two quarks graphically in a ( x′ , t ′ ) diagram. Specify the 
coordinates of the turning points in terms of M, f and c, and determine the 
maximum distance between the two quarks observed in Lab frame S ′ . 

 Use Answer Sheet 3. 
 The coordinates of particle observed in reference frames S and S ′′  are related 

by the Lorentz transformation 

⎪⎩

⎪
⎨
⎧

+=′

+=′

)(

)(

c
xtt

ctxx

βγ

βγ
 

 where cv /=β , 21/1 βγ −=  and v is the velocity of frame S moving 

relative to the frame S ′′ . 
4) For a meson with rest energy Mc2=140 MeV and velocity 0.60c relative to the 

Lab frame S ′′ , determine its energy E ′  in the Lab Frame S ′′ . 
 
ANSWER SHEET 1      ANSWER SHEET 2 
1)           2) 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

O 
t 

x 

O 
x 

p 

t 

x1, x2 

O 
x1 

p1 

O 
x2 

p2 

Quark1 Quark2 

The maximum distance between 
the two quarks is d= 



 4

ANSWER SHEET 3 

3)  
 
 

 

 

 

 

 

Theoretical Problem 1—Solution 

1) 1a. Taking the force center as the origin of the space coordinate x and the zero 
potential point, the potential energy of the particle is 

||)( xfxU =         (1) 

The total energy is 

||42
0

22 xfcmcpW ++= . 

1b. Neglecting the rest energy, we get 

|||| xfcpW += ,       (2) 

Since W is conserved throughout the motion, so we have 

cpxfcpW 0|||| =+= ,       (3) 

Let the x axis be in the direction of the initial momentum of the particle, 
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The maximum distance of the particle from the origin, let it be L, corresponds to p=0. 
It is 

fcpL /0= . 

 1c. From Eq. 3 and Newton’s law 
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we can get the speed of the particle as 

c
dt
dp

f
c

dt
dx == ,       (6) 

i.e. the particle with very high energy always moves with the speed of light except that 
it is in the region extremely close to the points Lx ±= . The time for the particle to 
move from origin to the point Lx = , let it be denoted by τ , is 

fpcL // 0==τ . 

So the particle moves to and for between Lx =  and Lx −=  with speed c and period 

fp /44 0=τ . The relation between x  and t  is 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

≤≤−=
≤≤−=
≤≤−=
≤≤=

,43,4
,32,2

,2,2
0,

ττ
ττ
ττ

τ

tLctx
tctLx

tctLx
tctx

      (7) 

 The required answer is thus as given in Fig. 1 and Fig. 2. 
 
 
 
 
 
 
 

Fig. 1         Fig. 2 
 2) The total energy of the two-quark system can be expressed as 

|||||| 2121
2 xxfcpcpMc −++= ,     (8) 

where 1x , 2x  are the position coordinates and 1p , 2p  are the momenta of quark 1 

and quark 2 respectively. For the rest meson, the total momentum of the two quarks is 
zero and the two quarks move symmetrically in opposite directions, we have 

021 =+= ppp ,  21 pp −= , 21 xx −= .     (9) 

Let p0 denote the momentum of the quark 1 when it is at x=0, then we have 

cpMc 0
2 2=   or   2/0 Mcp =       (10) 

From Eq. 8, 9 and 10, the half of the total energy can be expressed in terms of 1p  and 
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1x  of quark 1: 

|||| 110 xfcpcp += ,        (11) 

just as though it is a one particle problem as in part 1 (Eq. 3) with initial momentum 

2/0 Mcp = . From the answer in part 1 we get the (x, t) diagram and (p, x) diagram of 

the motion of quark 1 as shown in Figs. 3 and 4. For quark 2 the situation is similar 
except that the signs are reversed for both x and p; its (x, t) and (p, x) diagrams are 
shown in Figs. 3 and 4. 
 The maximum distance between the two quarks as seen from Fig. 3 is 

fMcfcpLd //22 2
0 === .       (12) 

 
 
 
 
 
 
 
 

Fig. 3 
 
 
 
 
 
 
 
 

Fig. 4a     Quark1 
Fig. 4b     Quark2 

 
 3) The reference frame S moves with a constant velocity V=0.6c relative to the Lab 
frame S ′′  in the x′  axis direction, and the origins of the two frames are coincident at 
the beginning ( 0=′= tt ). The Lorentz transformation between these two frames is 
given by: 
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where cV /=β , and 21/1 βγ −= . With cV 6.0= , we have 5/3=β , and 

4/5=γ . Since the Lorenta transformation is linear, a straight line in the (x, t) diagram 

transforms into a straight line the ( x′ , t ′ ) diagram, thus we need only to calculate the 
coordinates of the turning points in the frame S ′ . 
 For quark 1, the coordinates of the turning points in the frames S and S ′  are as 
follows: 

Frame  S        Frame S ′  

1x   1t    )( 111 ctxx βγ +=′    )/( 111 extt βγ +=′  

11 4
3

4
5 ctx +=       cxt /

4
3

4
5

11 +=  

0  0   0       0 

L  τ    LL 2)1( =+ βγ     ττβγ 2)1( =+  

0  τ2     LL
2
32 =γβ      τγτ

2
52 =  

L−   τ3    LL =− )13( βγ     ττβγ 3)3( =−  

0  τ4    LL 34 =γβ      τγτ 54 =  

where fMcfcpL 2// 2
0 == , fMcfp 2//0 ==τ . 

 For quark 2, we have 
Frame  S        Frame S ′  

2x   2t    )( 222 ctxx βγ +=′    )/( 222 cxtt βγ +=′  

22 4
3

4
5 ctx +=       cxt /

4
3

4
5

22 +=  

0  0   0       0 

L−   τ    LL
2
1)1( −=−− βγ    ττβγ

2
1)1( =−  

0  τ2     LL
2
32 =γβ      τγτ

2
52 =  

L  τ3    LL
2
7)13( =+βγ    ττβγ

2
9)3( =+  

0  τ4    LL 34 =γβ      τγτ 54 =  
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With the above results, the ( x′ , t ′ ) diagrams of the two quarks are shown in Fig. 5. 
 The equations of the straight lines OA and OB are: 

tctx ′=′′ )(1 ;   ττβγ 2)1(0 =+≤′≤ t ;    (14a) 

tctx ′−=′′ )(2 ;  ττβγ
2
1)1(0 =−≤′≤ t     (14b) 

The distance between the two quarks attains its maximum d ′  when τ
2
1=′t , thus we 

have maximum distance 

f
McLcd
2

)1(2)1(2
2

=−=−=′ βγτβγ .      (15) 

 
Fig. 5 

4) It is given the meson moves with velocity V=0.6 crelative to the Lab frame, its 
energy measured in the Lab frame is 

175140
8.0

1
1 2

2

=×=
−

=′
β

McE MeV. 

 Grading Scheme 
Part 1 2 points, distributed as follows: 
 0.4 point for the shape of x(t) in Fig. 1; 

0.3 point for 4 equal intervals in Fig. 1; 
(0.3 for correct derivation of the formula only) 
0.1 each for the coordinates of the turning points A and C, 0.4 point in total; 
0.4 point for the shape of p(x) in fig. 2; (0.2 for correct derivation only) 

0.1 each for specification of 0p , fcpL /0= , 0p− , L−  and arrows, 0.5 point 

in total. 
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(0.05 each for correct calculations of coordinate of turning points only). 
Part 2 4 points, distributed as follows: 

 0.6 each for the shape of )(1 tx  and )(2 tx , 1.2 points in total; 

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 3, 0.8 point 
in total; 

 0.3 each for the shape of )( 11 xp  and )( 22 xp , 0.6 point in total;  

0.1 each for 2/0 Mcp = , fMcL 2/2= , 0p− , L−  and arrows in Fig. 4a and 

Fig. 4b, 1 point in total; 

0.4 point for fMcd /2=  

Part 3 3 point, distributed as follows: 

 0.8 each for the shape of )(1 tx ′′  and )(2 tx ′′ , 1.6 points in total; 

0.1 each for the coordinates of the turning points A, B, D and E in Fig. 5, 0.8 point 
in total; (0.05 each for correct calculations of coordinate of turning points 
only). 

 0.6 point for fMcd 2/2=′ . 

Part 4 1 point (0.5 point for the calculation formula; 0.5 point for the numerical value 
and units) 
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Theoretical Problem 2 
SUPERCONDUCTING MAGNET 

 
 Super conducting magnets are widely used in laboratories. The most common 
form of super conducting magnets is a solenoid made of super conducting wire. The 
wonderful thing about a superconducting magnet is that it produces high magnetic 
fields without any energy dissipation due to Joule heating, since the electrical 
resistance of the superconducting wire becomes zero when the magnet is immersed in 
liquid helium at a temperature of 4.2 K. Usually, the magnet is provided with a 
specially designed superconducting switch, as shown in Fig. 1. The resistance r of the 

switch can be controlled: either r=0 in the superconducting state, or nrr =  in the 

normal state. When the persistent mode, with a current circulating through the magnet 
and superconducting switch indefinitely. The persistent mode allows a steady magnetic 
field to be maintained for long periods with the external source cut off. 
 The details of the superconducting switch are not given in Fig. 1. It is usually a 
small length of superconducting wire wrapped with a heater wire and suitably 
thermally insulated from the liquid helium bath. On being heated, the temperature of 
the superconducting wire increases and it reverts to the resistive normal state. The 

typical value of nr  is a few ohms. Here we assume it to be 5Ω . The inductance of a 

superconducting magnet depends on its size; assume it be 10 H for the magnet in Fig. 1. 
The total current I can be changed by adjusting the resistance R. 
 This problem will be graded by the plots only! 
 The arrows denote the positive direction of I, I1 and I2. 

 
Fig. 1 

1) If the total current I and the resistance r of the superconducting switch are controlled 
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to vary with time in the way shown in Figs, 2a and 2b respectively, and assuming 
the currents I1 and I2 flowing through the magnet and the switch respectively are 
equal at the beginning (Fig. 2c and Fig. 2d), how do they vary with time from t1 to 
t4? Plot your answer in Fig. 2c and Fig. 2d 

 

2) Suppose the power switch K is turned on at time t=0 when r=0, I1=0 and R=7.5Ω, 

and the total current I is 0.5A. With K kept closed, the resistance r of the 
superconducting switch is varied in he way shown in Fig. 3b. Plot the 
corresponding time dependences of I, I1 and I2 in Figs. 3a, 3c and 3d respectively. 

 

 

3) Only small currents, less than 0.5A, are allowed to flow through the 

Fig.2a 
 
 
 

2b 
 
 
 

2c 
 
 
 

2d 

Fig. 3a 
 
 
 

3b 
 
 
 

3c 
 
 
 

3d 
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superconducting switch when it is in the normal state, with larger currents the 
switch will be burnt out. Suppose the superconducting magnet is operated in a 
persistent mode, i. e. I=0, and I1=i1(e. g. 20A), I2=-i1, as shown in Fig. 4, from t=0 
to t=3min. If the experiment is to be stopped by reducting the current through the 
magnet to zero, how would you do it? This has to be done in several operation steps. 
Plot the corresponding changes of I, r, I1 and I2 in Fig. 4 

 

 

4) Suppose the magnet is operated in a persistent mode with a persistent current of 20A 
(t=0 to t=3min. See Fig. 5). How would you change it to a persistent mode with a 
current of 30a? plot your answer in Fig. 5. 

 

Fig. 4a 
 
 
 
 

4b 
 
 
 

4c 
 
 
 
 

4d 

Fig. 5a 
 
 
 

5b 
 
 
 

5c 
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 Theoretical Problem 2—Solution 

 1) For t=t1 to t3 

 Since 0=r , the voltage across the magnet dtLdIVM /1= =0, therefore, 

0111 2
1)( ItII == ; 

012 2
1 IIIII −=−= . 

 For t=t3 to t4 

 Since I2=0 at t=t3, and I is kept at 02
1 I  after 

 3tt = , 02 == nM rIV , therefore, 1I  and 2I  will not change. 

01 2
1 II = ; 

02 =I  

 These results are shown in Fig. 6. 

 
 

5d 

Fig. 6a 
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6c 
 
 
 

6d 
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 2) For 0=t  to 1=t min: 

 Since 0=r , 0/1 == dtLdIVM  

0)0(11 == II  

         5.012 =−= III A. 

 At 1=t min, r  suddenly jumps from O to nr , I will drop from RE /  to 

)/( nrRE +  instantaneously, because 1I  can not change abruptly due to the 

inductance of the magnet coil. For RE / =0.5A, Ω= 5.7R  and Ω= 5nR . I will drop 

to 0.3A. 
 For 1=t  min to 2 min: 

 I , 1I  and 2I  gradually approach their steady values: 

5.0==
R
EI A, 

5.01 == II A 

02 =I . 

The time constant 
 

n

n

Rr
rRL )( +

=τ . 

 When 10=L H, Ω= 5.7R  and Ω= 5nr , 3=τ sec. 

 For 2=t min to 3 min: 

 Since 0=r , 1I  and 2I  will not change, that is 

5.01 =I A and 02 =I  

 
 

Fig. 7a 
 
 

7b 
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 3) The operation steps are: 
 First step 

 Turn on power switch K, and increase the total current I to 20 A, i. e. equal to 1I . 

Since the superconducting switch is in the state 0=r , so that LVM =  0/1 =dtdI , 

that is, 1I  can not change and 2I  increases by 20A, in other words, 2I  changes 

from 20− A to zero. 
 Second step 

 Switch r  from 0 to nr . 

 Third step 

 Gradually reduce I to zero while keeping 5.02 <I A: since nM rVI /2 =  and 

dtdILVm /1= , when 10=L H, Ω= 5nr , the requirement 5.02 <I A corresponds to 

25.0/1 <dtdI A/sec, that is, a drop of <15A in 1 min. In Fig. 8 dtdI / ～0.1A/sec and 

dtdI /1  is around this value too, so the requirement has been fulfilled. 

 Final step 

 Switch r  to zero when 0=MV  and turn off the power switch K. These results 

are shown in Fig. 8. 

 

7c 
 
 
 
7d 

Fig. 8a 
 
 
 

8b 
 
 

8c 
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4) First step and second step are the same as that in part 3, resulting in 02 =I . 

 Third step Increase I by 10 A to 30 A with a rate subject to the requirement 

5.02 <I A. 

 Fourth step Switch r  to zero when 0=MV . 

 Fifth step Reduce I to zero, 301 =I  A will not change because MV  is zero. 

12 III −=  will change to 30−  A. The current flowing through the magnet is thus 

closed by the superconducting switch. 
 Final step Turn off the power switch K. The magnet is operating in the persistent 
mode. 
 These results are shown in Fig. 9. 

 
 Grading Scheme 
Part 1,   2 points: 

 0.5 point for each of 1I , 2I  from 1tt =  to 3t  and 1I , 2I  from 3tt =  to 4t . 

Part 2,   3 points: 

 0.3 point for each of 1I , 2I  from 0=t  to 1 min, I , 1I , 2I  at 1=t  min, 

8d 

Fig. 9a 
 
 
 

9b 
 
 
 

9c 
 
 
 

9d 
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and 0I , 1I , 2I  from 1=t  to 2 min; 

0.2 point for each of I , 1I , and 2I  from 2=t  to 3 min. 

Part 3,    2 points: 
0.25 point for each section in Fig. 8 from 3=t  to 9 min, 8 sections in total. 

Part 4,    3 points: 
 0.25 point for each section in Fig. 9 from 3=t  to 12 min, 12 sections in total. 
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 Theoretical Problem 3 
COLLISION OF DISCS WITH SURFACE FRICTION 

 
 A homogeneous disc A of mass m and radius RA moves translationally on a smooth 
horizontal x-y plane in the x direction with a velocity V (see the figure on the next 
page). The center of the disk is at a distance b from the x-axis. It collides with a 
stationary homogeneous disc B whose center is initially located at the origin of the 
coordinate system. The disc B has the same mass and the same thickness as A, but its 
radius is RB. It is assumed that the velocities of the discs at their point of contact, in the 
direction perpendicular to the line joining their centers, are equal after the collision. It 
is also assumed that the magnitudes of the relative velocities of the discs along the line 
joining their centers are the same before and after the collision. 
1) For such a collision determine the X and Y components of the velocities of the two 

discs after the collision, i. e. AXV ′ , AYV ′ , BXV ′  and BYV ′  in terms of m , AR , BR , 

V  and b . 

2) Determine the kinetic energies AE ′  for disc A and BE ′  for disc B after the collision 

in terms of m , AR , BR , V  and b . 

 

 

Theoretical Problem 3—Solution 

 1) When disc A collides with disc B, let n be the unit vector along the normal to 
the surfaces at the point of contact and t be the tangential unit vector as shown in the 

figure. Let ϕ  be the angle between n and the x axis. Then we have 

ϕsin)( BA RRb +=  

The momentum components of A and B along n and t before collision are: 
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0,cos == BnAn mVmVmV ϕ , 

0,sin == BtAt mVmVmV ϕ . 

 Denote the corresponding momentum components of A and B after collision by 

AnVm ′ , BnVm ′ , AtVm ′ , and BtVm ′ . Let Aω  and Bω  be the angular velocities of A and 

B about the axes through their centers after collision, and AI  and BI  be their 

corresponding moments of intertia. Then, 
2

2
1

AA mRI = ,     2

2
1

BB mRI =  

 The conservation of momentum gives 

BnAn VmVmmV ′+′=ϕcos ,       (1) 

tnAt VmVmmV ′+′=ϕsin ,        (2) 

 The conservation of angular momentum about the axis through O gives 

BBAABAAt IIRRVmmVb ωω +++′= )(       (3) 

 The impulse of the friction force exerted on B during collision will cause a 

momentum change of AtVm ′  along t and produces an angular momentum BBI ω  

simultaneously. They are related by. 

BBbBt IRVm ω=′          (4) 

 
 During the collision at the point of contact A and B acquires the same tangential 
velocities, so we have 

BBBtAAAt RVRV ωω −′=−′         (5) 

It is given that the magnitudes of the relative velocities along the normal direction 
of the two discs before and after collision are equal, i. e. 

AnBn VVV ′−′=ϕcos .         (6) 
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From Eqs.   1 and 6 we get 

0=′AnV , 

ϕcosVVBn =′ . 

 From Eqs. 2 to 5, we get 

      ϕsin
6
5VVAt =′ , 

      ϕsin
6
1VVBt =′ , 

      
A

A R
V

3
sinϕω = , 

      
B

B R
V

3
sinϕω = . 

 The x and y components of the velocities after collision are: 

 ,
)(6

5sincos 2

2

BA
AtAnAx RR

VbVVV
+

=′+′=′ ϕϕ       (7) 

2

22

)(6
)(5

cossin
BA

BA
AtAnAy RR

bRRVb
VVV

+
−+

=′+′−=′ ϕϕ ,   (8) 

⎥
⎦

⎤
⎢
⎣

⎡
+

−=′+′=′
2

2

)(6
51sincos

BA
BtBnBx RR

bVVV ϕϕ ,     (9) 

 

    2

22

)(6
)(5

cossin
BA

BA
BtBnBy RR

bRRVb
VVV

+
−+

−=′+′−=′ ϕϕ ,  (10) 

 2) After the collision, the kinetic energy of disc A is 

2

22
222

)(8
3

2
1)(

2
1

BA
AAAyAxA RR

bmVIVVmE
+

=+′+′=′ ω     (11) 

 while the kinetic energy of disc B is 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

−=+′+′=′ 2

2
2222

)(12
111

2
1

2
1)(

2
1

BA
BBByBxB RR

bmVIVVmE ω   (12) 

Grading Scheme 
 1. After the collision, the velocity components of discs A and B are shown in Eq. 7, 
8, 9 and 10 of the solution respectively. The total points of this part is 8. 0. If the result 
in which all four velocity components are correct has not been obtained, the point is 
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marked according to the following rules. 
 0.8 point for each correct velocity component; 
 0.8 point for the correct description of that the magnitudes of the relative velocities 
of the discs along the line joining their centers are the same before and after the 
collision. 
 0.8 point for the correct description of the conservation for angular momentum; 
 0.8 point for the correct description of the equal tangential velocity at the touching 
point; 
 0.8 point for the correct description of the relation between the impulse and the 
moment of the impulse. 
 2. After the collision, the kinetic energies of disc A and disc B are shown in Eqs. 
11 and 12 of the solution respectively. 
 1.0 point for the correct kinetic energies of disc A; 
 1.0 point for the correct kinetic energies of disc B; 
 The total points of this part is 2.0 
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EXPERIMENTAL PROBLEM 1 
Determination of light reflectivity of a transparent dielectric surface.  

 
Experimental Apparatus 

1. He-Ne Laser(～1.5mW).The light from this laser is not linearly polarized. 

2. Two polarizers (P1, P2) with degree scale disk (Fig. 1), one (P1) has been 
mounted in front of the laser output window as a polarizer, and another one can be 
fixed in a proper place of the drawing board by push-pins when it is necessary. 

3. Two light intensity detectors (D1, D2) which consisted of a photocell and a 
microammeter (Fig. 2). 

4. Glass beam splitter(B). 
5. Transparent dielectric plate, whose reflectivity and refractive index are to be 

determined. 
6. Sample table mounted on a semicircular degree scale plate with a coaxial swivel 

arm(Fig. 3). 
7. Several push-.pins for fixing the sample table on the drawing board and as its 

rotation axis. 
8. Slit aperture and viewing screen for adjusting the laser beam in the horizontal 

direction and for alignment of optical elements. 
9. Lute for adhere of optical elements in a fixed place. 
10. Wooden drawing board. 
11. Plotting papers 

 
Experiment Requirement 
1. Determine the reflectivity of the p-component as a function of the incident angle 

(the electric field component, parallel to the plane of incidence is called the 
p-component). 

(a) Specify the transmission axis of the polarizer (A) by the position of the marked 
line on the degree scale disk in the p-componet measurement(the transmission 
axis is the direction of vibration of the electric field vector of the transmitted 
light). 

(b) Choose any one of the light intensity detector and set its micro-ammeter at the 
range of "×5". Verify the linear relation ship between  the light  intensity and 
the micro-ammeter reading. Draw the optical schematic diagram. Show your 
measured data and  calculated  results(including  the calculation formula)in 
the farm of a table. Plot the linear relationship curve. 
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(c) Determine the reflectivity of the p-component as a function of the incident 

angle. Draw the optical schematic diagram. Show your measured data and 
calculated reflectivity(including the calculation formula)in the form of a table. 
Plot the reflectivity as a function of the incident angle. 

 
2. Determine the refractive index of the sample as accurate as possible. 
Explanation and Suggestion 

1. Laser radiation avoid direct eye exposure. 
2. Since the output power of the laser beam may fluctuate from time to time, the 

fluctuation of light output has to be monitored during the performance of the 
experiment and a correction of the experimental results has to be made. 

3. The laser should be lighting all the time, even when you finish your experiment 
and leave the examination hall, the laser should be keeping in work. 

4. The reflected light is totally plane polarized at an incident angle Bθ  while 

tg Bθ n=  (refractive index). 

 

Fig. 1 polarizers with degree scale disk 
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Fig. 2  Light intensity detector 
(1) Insert the plug of photocell into the “INPUT” socket of microammeter 
(2) Switching on the microammeter. 
(3) Blocd off the light entrance hole in front of the photocell and adjust the scale 

reading of micro ammeter to “0”. 
(4) Set the “Multiple” knob to a proper range. 

 

Fig.3 Sample table mounted on a semicircular degree scale plate 
 

Experimental Problem 1——Solution 

1. (a) Determine the transmission axis of the polarizer and the Brewster angle Bθ  of 

the sample by using the fact that the rerlectivity of the p-component 0=pR  at 

the Brewster angle. 

Change the orientation of the transmission axis of 1P , specified by the position of 

the marked line on the degree scale disk (ψ ) and the incident angle ( iθ ) successively 

until the related intensity 0=rI . 
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Now the incident light consists of p-component only and the incident angle is Bθ , the 

corresponding values 1ψ  and Bθ  are shown below: 

1ψ  140.0° 322.0° 141.0° 322.5° 

θ  56.4° 56.4° 56.2° 56.2° 

°±°= 5.05.1401ψ   or  322.3°±0.1° 

 The Brewster angle Bθ  is 56.3°±0.1° 

1. (b) Verification of the linear relationship between the light intensity and the 
microammenter reading. 

 

 The intensity the transmitted light passing through two polarized 1P  and 2P  

obeys Malus’ law 

θθ 2
0 cos)( II =  

where 0I  is the intensity of the light polarized by 1p  and incident, I  is the 

intensity of the transmitted light, and θ  is the angle between the transmission axes of 

1P  and 2p . Thus we can obtain light with various intensities for the verification by 

using two polarizers. 
 The experimental arrangement is shown in the figure. 

 The light intensity detector 1D  serves to monitor the intensity fluctuation of the 

incident beam (the ratio of 1I  to 2I  remain unchanged), and 2D  measures 2I . Let 

)(1 θi  and )(2 θi  be the readings of 1D  and 2D  respectively, and )(2 θψ  be the 

reading of the marked line position. 02 =i  when 90=θ °, the corresponding 2ψ  is 

2ψ (90°), and the value of θ  corresponding to 2ψ  is 
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|90)90(| 22 °±°−= ψψθ  

Data and results; 

°=° 4)90(2ψ  

2ψ  94.0° 64.0° 49.0° 34.0° 4.0° 

θ  0.0° 30.0° 45.0° 60.0° 90.0° 

Ai μθ )(1  6.3×1 5.7×1 5.7×1 5.7×1 5.7×1 

Ai μθ )(2  18.7×5 12.7×5 8.2×5 4.0×5 0.0×5 

 From the above data we can obtain the values of )(/)( 2 θθ II  from the formula 

)0(
)0(

)(
)()(

2

1

1

2

0 i
i

i
i

I
I ⋅=

θ
θθ  

and compare them with θ2cos  for examining the linear relationship. The results 

obtained are: 

θ  0.0° 30.0° 45.0° 60.0° 90.0° 

θ2cos  1.00 0.75 0.50 0.25 0.00 

0/)( II θ  1.00 0.75 0.49 0.24 0.00 

 
1. (c) Reflectivity measurement 

 The experimental arrangement shown below is used to determine the ratio of 0I  

to 1I  which is proportional to the ratio of the reading )( 20i  of 2D  to the 

corresponding reading )( 10i  of 1D . 
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 Then used the experimental arrangement shown below to measure the relativity 

pR  of the sample at various incident angle )(θ  while the incident light consists of 

p-component only. Let )(1 θi  and )(2 θi  be the readings of 1D  and 2D  

respectively. 

 
 Then the reflectivity is 

20

10

1

2

0 )(
)()()(

i
i

i
i

I
IRp ⋅==

θ
θθθ  

Data and results: 

Ai
Ai

μ
μ

ψ

3.13
58.19

5.140

10

20

1

=
×=
°=

 

θ (°) )(2 θi  )(1 Ai μ  )(θpR  

5 
10 
20 
30 
40 
50 
53 
55 

56.3（dark） 

15.1×0.2 

14.9×0.2 

13.3×0.2 

11.4×0.2 

7.8×0.2 

11.1 
11.2 
11.1 
12.2 
14.7 
16.9 
11.3 
11.3 
11.5 

0.037 
0.036 
0.032 
0.025 
0.014 

0.0037 
0.0017 

0.00059 

～0 
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58 
60 
64 
66 
68 
72 
76 
80 
84 

2.3×0.2 

0.7×0.2 

0.3×0.2 

～0 

0.3×0.2 

1.1×0.2 

6.5×0.2 

7.8×0.2 

16.3×0.2 

5.3×0.1 

13.1×1 

4.4×5 

9.1×5 

11.5 
13.5 
16.7 
11.8 
15.0 
11.7 
14.0 
11.7 
14.5 

0.0007 
0.0024 
0.011 
0.018 
0.029 
0.061 
0.13 
0.25 
0.42 

The curve of reflectivity of p-component as a function of incident in plexiglass 

 
2. The Brewster angle Bθ  can be found from the above date as 

°±°= 2.03.56Bθ  

The index of refraction can be calculated as 
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01.050.1tan ±== Bn θ  

The sources of errors are: 
1. Detector sensitivity is low. 
2. The incident light does not consist of p-component only. 
3. The degree scales are not uniform. 

 
EXPERIMENTAL PROBLEM 1: Grading Scheme(10 points) 
Part 1. Reflectivity of the p-component. 7 points, distributed as follows. 

a. Determination of the transmission axis of the polarizer (A) in p-component 
measurement, 1 point. 

(Error less than ±2°,    1.0point; 
error less than ±3°,    0.7point; 
 error less than ±4°,   0.3point; 

 error less than ±5°，  0.1 point.) 

b. Verification of the linearity of the light intensity detector(2 points). Draws the 
optical schematic diagram correctly, 1.0 point; (Without the correction of the 
fluctuation of the light intensity, 0.4 point only); 

Uses 0/ II ～ θ2cos  figure to show the “linearity”, 0.5 point; 

Tabulate the measured data(with 5 points at least)correctly, 0.5 point. 
c. Determination of the reflectivity of the p-component of the light as a function of 

incident angle, 4 points, distributed as follows. 
Draws the optical schematic diagram correctly and tabulate the measured data 
perfectly, 2.0 points; 
Plot the reflectivity as the function of incident angle with indication of errors, 2 
points. 

Part 2. Determination of the refractive index of sample, 3 point. 
Brewster angle of sample, 1 point; 

   (Error less than ±1°,     1.0point; 
 error less than ±2°,     0.5point; 
 error less than ±3°,     0.2point; 
 error larger than ±3°,      0 point.) 

The refractive index of sample, 0.5 point. 
Discussion and determination of errors, 1.5 points. 
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EXPERIMENTAL PROBLEM 2 
Black Box 
Given a black box with two similar terminals. There are no more than three passive 
elements inside the black box. Find the values of elements in the equivalent circuit 
between the terminals. This box is not allowed to be opened. 
Experimental Apparatus 

1. Double channel oscilloscope with a panel illustration, showing the name and 
function of each knob 

2. Audio frequency signal generator with a panel illustration, showing the name 
and function of each knob 

3. Resistance box with a fixed value of l00 ohm(< ±0.5%) 
4. Several connecting wires 
5. For the coaxial cables,  the wire in black color at the terminal is grounded. 
6. Log-log paper, semi-log paper, and millimeter paper are provided for use if 

necessary 
Note: The knobs, which were not shown on the panel illustration of the “signal 

generator” and “oscilloscope”, have been set to the correct positions. It should 
not be touched by the student. 

Experimental Requirements 
1. Draw the circuit diagram in your experiment. 
2. Show your measured data and the calculated results in the form of tables. Plot 

the experimental curves with the obtained results on the coordinate charts 
provided(indicate the title of the diagram and the titles and scale units of the 
coordinate axes) 

3. Given the equivalent circuit of the black box and the names of the elements with 
their values in the equivalent circuit(write down the calculation formulas). 

Instructions 
1. Do your experiment in the frequency range between 100 Hz and 50kHz. 
2. The output voltage of the signal generator should be less than 1.0V 

(peak-to-peak). Set the “Out Attenuation” switch to “20” db position and it 
should not be changed. 

3. On connecting the wires, be careful to manage the wiring so as to minimize the 
50Hz interference from the electric mains. 

Instruction for Using XD2 Type Frequency Generator 
1. Set the “Out Attenuation” to “20” db position and it should not be changed. 
2. Set the “Damping Switch” to “Fast” position. 
3. The indication of the voltmeter of the signal generator is the relative value, but 
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not the true value of the output. 
4. Neglect the error of the frequency readings. 

Note: For XD22 Type Audio Frequency generator, there is no “Damping Switch”, and 
the “output” switch should be set to the sine “~” position. 
 
Instruction for Using SS-5702 Type Oscilloscope 

1. Keep the “V mode” switch in “Dual” position. 
2. The “Volts/div” (black) and the “variable control” (red) vary the gain of the 

vertical amplifier, and when the “variable control” (red) is ill the fully 
clockwise position, the black setting are calibrated. 

3. The “Times/div” (Black) varies the horizontal sweep rate from 0.5μs/div to 

0.2s/div, and they are calibrated when the “variable control” (red) is in the fully 
clockwise CAL position. 

4. The “Trigging Source” (Trigging sweep signal) is used to select the trigging 
signal channel and the" level" control is used to adjust the amplitude of the 
trigging signal. 

5. Measuring accuracy: ±4%. 
Instruction for Using “Resistance Box” 

The resistance of the “Resistance Box” has been set to a value of 100ohm, and it 
should not be changed.  
Experimental problem 2......  Solution 

1. The circuit diagram is shown in Fig. 1 

 

Fig. 1 
We have the relation: 

R
VI R= ; 

R
V

V
I

VRZ
R

RZRZ ++ ==+  



 33

2. Measure the values of RZV +  and RV  at various frequencies (f), the measured data 

and calculated value of Z+R are shown in table l. “The Z+R-f curve is plotted in Fig. 2 

 
Table l. The magnitude of impedance verus frequency 

310(×f Hz) )( ppRZ VU +  RU mVpp Ω×+ 310(RZ ) 

0.100 
0.200 
0.400 
0.700 
0.900 
1.00 
1.10 
1.16 
1.25 
1.50 
2.00 
4.00 
8.00 
15.0 
30.0 
50.0 

0.600 
0.600 
0.600 
0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.300 
0.600 
0.600 
0.600 
0.600 

22.0 
45.0 
94.0 
92.0 
121 
136 
140 
141 
140 
120 
88.0 
78.0 
38.0 
20.0 
10.0 
6.0 

2.73 
1.33 

0.638 
0.326 
0.248 
0.220 
0.214 
0.213 
0.214 
0.250 
0.341 
0.769 
1.58 
3.00 
6.00 
10.0 

From table 1 and Fig. 2, we got the conclusions: 

(1) Current resonance (minimum of Z)  occurs at 3
0 1016.1 ×≅f Hz. 

(2) 0ff 〈〈 , fZ ∝ , 2/πϕ −≈Δ . The impedance of the “black box” at low 

frequency is dominated by a inductance. 
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(3) 0ff 〉〉 , fZ ∝ , 2/πϕ ≈Δ . The impedance of the “black box” at high 

frequency is dominated by a inductance. 
(4) Equivalent circuit of the “black box”; r, L and C connected in series shown in 

Fig. 3. 

 
Fig. 3 

3. Determination of the values of r , L  and C . 
 (a) r  

 At resonance frequency 0f  

LC VV −=  

 Then 

RrR
V

V
I

VRZ
R

RZRZ +===+ ++  

 From table 1, Ω=+ 213Rr , it is given Ω= 100R , so the equivalent resistance 
r  in Fig. 3 is equal 113Ω . 
 (b) C  

 At low frequency, 0≈Lz  in Fig. 3. So the circuit could be considered as a series 

RC circuit. 
 From phasor diagram, Fig. 4, 

I
VV

I
VZ

C
rRRZC

C

221 ++ −
===

ω
 

 Since 322 106/ −
++ ×≈RZrR VV  at 100=f Hz, 2

rRV +  can beneglected with respect to 
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2
RZV + , so 

Ω×=+≈≈ + 31073.21 RZ
I

V
C

RZ

ω
 

f
RZ

C μ
ω

58.0
)(

1 =
+

≈ . 

fC μ58.0≅ .                         Fig. 4 

 (c) L 

 At high frequency, 0≈LZ  in Fig. 3. So the circuit could be considered as a series 

RL circuit. 
 From phasor diagram, Fig. 5,  

22|| RrRZL VVV ++ −= , 

 Since 422 105.4/ −
++ ×≈RZRr VV  at 50=f kHz, 2

RrV +  can be 

neglected with respect to 2
RZV + , so                              Fig. 5 

Ω=+≈=== + 410
|| RZ

I
V

I
VZL RZL

Lω     (3) 

     8.31=+=
ω

RZL mH. 

 Error estimation: 
 It is given, precision of the resistance box reading %5.0/ ≈Δ RR  
    precision of the voltmeter reading %4/ ≈Δ VV  

 (1) Resistance r : at resonance frequency 0f  

R
V

VRr
R

RZ+=+  

%4)( ≈Δ+
Δ

+
Δ

=
+
+Δ

+

+

R
R

V
V

V
V

Rr
Rr

R

R

RZ

RZ +4%+0.5%=8.5% 

Ω=Δ 16r  
 (2) Capacitance C: (Neglect the error of the frequency reading) 

R
V

VZ
C R

RZ
C

+=≅
ω
1  
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%8.8≈Δ+
Δ

+
Δ

=Δ

+

+

R
R

V
V

V
V

C
C

R

R

RZ

RZ  

 The approximation RZC VV +≈  will introduce apercentageerror 0.3% 

 (3) Inductance L: Similar to the results of capacitance C, but the percentage error 

introduced by the approximation RZL VV +≈  is much small (0.003%) and thus 

negligible. 

%5.8≈Δ
L
L . 

 
Experimental Problem 2: Grading Scheme (10 points maximum) 
1. Measuring circuit is correct as shown in Fig.(a) 

……2.0point 

 

Fig. a 
2. Correct data table and figure to show the characteristic of the black box 

……2.0 points 

3. The equivalent circuit of the black box, and the names of the elements with their 
values in the equivalent circuit are correct 

total 6.0 points 
(a)  R, L and C are connected in series 

……1.5 point 

(L and C are connected in series 

……1.0 point) 

(b)  Correct value (error less than 15% ) for each element 

……0.5 point (×3) 

(error between 15% and 30% 0.3) 
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(error between 30% and 50% 0.1) 
(c)  Correct calculation formula for each element 

……0.5 point (×3) 

(d)  Error estimate is reasonable for each element 

……0.5 points (×3) 

� � � � � � � � �


