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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

EXPERIMENTAL COMPETITION
JULY 4 1996

Time available: 5 hours

READ  THIS  FIRST :
1. Use only the pen provided.
2. Use only the marked side of the paper.
3.  No points will be given for error estimates except in 2c. However, it is ex-

pected that the correct number of significant figures are given.
4. When answering problems, use as little text as possible. You get full credit

for an answer in the form of a numerical value, a drawing, or a graph with
the proper definition of axes, etc.

5. Write on top of every sheet in your report:
• Your candidate number (IPhO ID number)
• The section number
• The number of the sheet

6. Write on the front page the total number of sheets in your report, including
graphs, drawings etc.

7. Ensure to include in your report the last page in this set used for answering
section 2a and 3b, as well as all graphs requested.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!

This set of problems consists of 10 pages.
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SUMMARY

The set of problems will cover a number of topics in physics. First, some me-
chanical properties of a physical pendulum will be explored, and you should be
able to determine the acceleration of gravity. Then, magnetic forces are added
to the pendulum. In this part the magnetic field from a permanent magnet is
measured using an electronic sensor. The magnetic moment of a small perma-
nent magnet will be determined. In addition, a question in optics in relation to
the experimental setup will be asked.

INSTRUMENTATION

The following equipment is available (see Figure 1):

A Large aluminium stand
B Threaded brass rod with a tiny magnet in one end (painted

white) (iron in the other).
C 2 Nuts with a reflecting surface on one side
D Oscillation period timer (clock) with digital display
E Magnetic field (Hall) probe, attached to the large stand
F 9 V  battery
G Multimeter, Fluke model 75
H 2 Leads
I Battery connector
J Cylindrical stand made of PVC (grey plastic material)
K Threaded rod with a piece of PVC and a magnet on the top
L Small PVC cylinder of length 25.0 mm (to be used as a spacer)
M Ruler

If you find that the large stand wiggles, try to move it to a different posistion on
your table, or use a piece of paper to compensate for the non-flat surface.

The pendulum should be mounted as illustrated in Figure 1. The long threaded
rod serves as a physical pendulum, hanging in the large stand by one of the
nuts. The groove in the nut should rest on the two vertical blades on the large
stand, thus forming a horizontal axis of rotation. The reflecting side of the nut
is used in the oscillation period measurement, and should always face toward
the timer.

The timer displays the period of the pendulum in seconds with an uncertainty
of ±1 ms. The timer has a small infrared light source on the right-hand side of
the display (when viewed from the front), and an infrared detector mounted
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close to the emitter. Infrared light from the emitter is reflected by the mirror
side of the nut. The decimal point lights up when the reflected light hits the de-
tector. For proper detection the timer can be adjusted vertically by a screw (see
N in Figure 1). Depending on the adjustment, the decimal point will blink ei-
ther once or twice each oscillation period. When it blinks twice, the display
shows the period of oscillation, T. When it blinks once, the displayed number is
2T. Another red dot appearing after the last digit indicates low battery. If bat-
tery needs to be replaced, ask for assistance.

The multimeter should be used as follows:
Use the “VΩ” and the “COM” inlets. Turn the switch to the DC voltage setting.
The display then shows the DC voltage in volts. The uncertainty in the instru-
ment for this setting is ±(0.4%+1 digit).

Figure 1. The instrumentation used.

SAFETY HAZARD: Be careful with the two vertical blades on the large
stand. The blades are sharp!
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THE  PHYSICAL  PENDULUM

A physical pendulum is an extended physical object of arbitrary shape that can
rotate about a fixed axis. For a physical pendulum of mass M oscillating about
a horizontal axis a distance, l, from the centre of mass, the period, T, for small
angle oscillations is

 T
g

I
M l

l= +2π
(1)

Here g is the acceleration of gravity, and I is the moment of inertia of the pen-
dulum about an axis parallel to the rotation axis but through the centre of mass.

Figure 2 shows a schematic drawing of the physical pendulum you will be us-
ing. The pendulum consists of a cylindrical metal rod, actually a long screw,
having length L, average radius R, and at least one nut. The values of various
dimensions and masses are summarised in Table 1. By turning the nut you can
place it at any position along the rod. Figure 2 defines two distances, x and l,
that describe the position of the rotation axis relative to the end of the rod and
the centre of mass, respectively.

Figure 2: Schematic drawing of the pendulum
with definition of important quantities.
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Rod
Length L (400.0 ± 0.4) mm
Average radius R (4.4 ± 0.1) mm
Mass MROD (210.2 ± 0.2) 10-3 kg
Distance between screw threads (1.5000 ± 0.0008) mm

Nut
Height h (9.50 ± 0.05) mm
Depth of groove d (0.55 ± 0.05) mm
Mass MNUT (4.89 ± 0.03) 10-3  kg

Table 1: Dimensions and weights of the pendulum

A reminder from the front page: No points will be given for error estimates ex-
cept in 2c. However, it is expected that the  correct number of significant fig-
ures are given.

Section 1 : Period of oscillation versus rotation axis position
(4 marks)

a)  Measure the oscillation period, T, as a function of the position x, and present
the results in a table.

b)  Plot T as a function of x in a graph. Let 1 mm in the graph correspond to
1 mm in x and 1 ms in T. How many positions give an oscillation period equal
to T = 950 ms, T = 1000 ms and T  = 1100 ms, respectively?

c)  Determine the x and l value that correspond to the minimum value in T.

Section 2 : Determination of g (5 marks)

For a physical pendulum with a fixed moment of inertia, I, a given period, T,
may in some cases be obtained for two different positions of the rotation axis.
Let the corresponding distances between the rotation axis and the centre of
mass be l1  and l2 . Then the following equation is valid:

                          l l I
M1 2 = (2)
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a)  Figure 6 on the last page in this set illustrates a physical pendulum with an
axis of rotation displaced a distance l1  from the centre of mass. Use the infor-
mation given in the figure caption to indicate all positions where a rotation axis
parallel to the drawn axis can be placed without changing the oscillation period.

b)  Obtain the local Oslo value for the acceleration of gravity g as accurately as
possible. Hint: There are more than one way of doing this. New measurements
might be necessary. Indicate clearly by equations, drawings, calculations etc.
the method you used.

c)  Estimate the uncertainty in your measurements and give the value of g with
error margins.

Section 3 : Geometry of the optical timer (3 marks)

a) Use direct observation and reasoning to characterise, qualitatively as well as
quantitatively, the shape of the reflecting surface of the nut (the mirror). (You
may use the light from the light bulb in front of you).

Options (several may apply):
1. Plane mirror
2. Spherical mirror
3. Cylindrical mirror
4. Cocave mirror
5. Convex mirror

In case of 2-5: Determine the radius of curvature.

b) Consider the light source to be a point source, and the detector a simple pho-
toelectric device. Make an illustration of how the light from the emitter is re-
flected by the mirror on the nut in the experimantal setup (side view and top
view). Figure 7 on the last page in this set shows a vertical plane through the
timer display (front view). Indicate in this figure the whole region where the
reflected light hits this plane when the pendulum is vertical.

Section 4 : Measurement of magnetic field (4 marks)

You will now use an electronic sensor (Hall-effect sensor) to measure magnetic
field. The device gives a voltage which depends linearly on the vertical field
through the sensor. The field-voltage coefficient is ∆V / ∆B  = 22.6 V/T (Volt/
Tesla). As a consequence of its design the sensor gives a non-zero voltage
(zero-offset voltage) in zero magnetic field. Neglect the earth’s magnetic field.
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Figure 3: Schematics of the magnetic field detector system

a)  Connect the sensor to the battery and voltmeter as shown above. Measure
the zero-offset voltage, V0 .

A  permanent magnet shaped as a circular disk is mounted on a separate stand.
The permanent magnet can be displaced vertically by rotating the mount screw,
which is threaded identically to the pendulum rod. The dimensions of the per-
manent magnet are; thickness t = 2.7 mm, radius r = 12.5 mm.

b)  Use the Hall sensor to measure the vertical magnetic field, B, from the per-
manent magnet along the cylinder axis, see Figure 4. Let the measurements
cover the distance from y = 26 mm (use the spacer) to y = 3.5 mm, where
y = 1 mm corresponds to the sensor and permanent magnet being in direct
contact. Make a graph of your data for B versus y.

Figure 4: Definition of the distance y between top of magnet and the active part
of the sensor.
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c)  It can be shown that the field along the axis of a cylindrical magnet is given
by the formula

B y B y t
y t r

y
y r

( )
( )

= +
+ +

−
+













0 2 2 2 2 (3)

where t is the cylinder thickness and r is the radius. The parameter B0  charac-
terizes the strength of the magnet.  Find the value of B0 for your permanent
magnet.§  Base your determination on two measured B-values obtained at dif-
ferent  y.

Section 5 : Determination of magnetic dipole moment (4 marks)

A tiny magnet is attached to the white end of the pendulum rod. Mount the pen-
dulum on the stand with its magnetic end down and with x = 100 mm. Place
the permanent magnet mount under the pendulum so that both the permanent
magnet and the pendulum have common cylinder axis. The alignment should
be done with the permanent magnet in its lowest position in the mount. (Al-
ways avoid close contact between the permanent magnet and the magnetic end
of the pendulum.)

a) Let z denote the air gap spacing between the permanent magnet and the
lower end of the pendulum. Measure the oscillation period, T, as function of the
distance, z. The measurement series should cover the interval from z = 25 mm
to z = 5.5 mm while you use as small oscillation amplitude as possible. Be
aware of the possibility that the period timer might display 2T (see remark re-
garding the timer under Instrumentation above). Plot the observed  T versus z.

b) With the additional magnetic interaction the pendulum has a period of oscil-
lation, T, which varies with z according to the relation

1 12
0

T
B

Mgl
f z∝ +

µ
( ) (4)

Here ∝  stand for “proportional to”, and µ is the magnetic dipole moment of
the tiny magnet attached to the pendulum, and  is the parameter determined
in section 4c. The function f(z) includes the variation in magnetic field with
distance. In Figure 5 on the next page you find the particular f(z) for our experi-
ment, presented as a graph.
Select an appropirate point on the graph to determine the unknown magnetic
moment µ.

§ 2 0B  is a material property called remanent magnetic induction, Br .
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Figure 5. Graph of the dimension-less function f(z) used in section 5b.
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Figure 6. For use in section 2a. Mark all positions where a rotation axis
(orthogonal to the plane of the paper) can be placed without changing the
oscillation period. Assume for this pendulum (drawn on scale, 1:1) that
I/M = 2100 mm2. (Note: In this booklet the size of this figure is about 75% of
the size in the original examination paper.)

Figure 7. For use in section 3b. Indicate the whole area where the reflected
light hits when the pendulum is vertical.

Include this page in your report!
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The men behind the equipment

The equipment for the practical competition was constructed and manufactured
at the Mechanics Workshop at the Department of Physics, University of Oslo
(see picture below, from left to right: Tor Enger (head of the Mechanics Workshop),
Pål Sundbye, Helge Michaelsen, Steinar Skaug Nilsen, and Arvid Andreassen).

The electronic timer was designed and manufactured by Efim Brondz,
Department of Physics, University of Oslo (see picture below). About 40.000
soldering points were completed manually, enabling the time-recording during
the exam to be smooth and accurate.
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

Model Answer
for the

EXPERIMENTAL COMPETITION
JULY 4  1996

These model answers indicate what is required from the candidates to get the maximum score
of 20 marks. Some times we have used slightly more text than required; paragraphs written in
italic give additional comments. This practical exam will reward students with creativity,
intuition and a thorough understanding of the physics involved.

Alternative solutions regarded as less elegant or more time consuming are printed in
frames like this with white background.

Anticipated INCORRECT answers are printed on grey background and are included to
point out places where the students may make mistakes or approximations without being
aware of them.

Section 1:
1a)  Threads are 1.50 mm/turn. Counted turns to measure position x.

Turn no. 0 10 20 30 40 50 60 70 80 90 100

x [mm] 10.0 25.0 40.0 55.0 70.0 85.0 100.0 115.0 130.0 145.0 160.0
T [ms] 1023 1005 989 976 967 964 969 987 1024 1094 1227

Turn no. 110 120 46 48 52 54

x [mm] 175.0 190.0 79.0 82.0 88.0 91.0
T [ms] 1490 2303 964 964 964 965

  Candidate: IPhO ID Question:   1 Page 1 of 11
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1b)  Graph: T(x), shown above.

T =  950 ms: NO positions
T =1000 ms: 2   positions
T =1100 ms: 1   position

If the answer is given as corresponding x-values, and these reflect the number of
positions asked for, this answer will also be accepted.

  Candidate: IPhO ID Question:   1 Page 2 of 11
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1c)  Minimum on graph: x = 84 mm,  (estimated uncertainty 1 mm)

By balancing the pendulum horizontally: l = 112.3 mm + 0.55 mm = 113 mm

ALTERNATIVE 1c-1:

   x
M L M h

M
M

M
xCM

ROD NUT NUT=
−

+
2

 = 197.3 mm for x = 84 mm

gives l = 197.3 mm - 84 mm = 113 mm
M = MROD + MNUT,  h = 8.40 mm = height of nut minus two grooves.

INCORRECT 1c-1: Assuming that the centre of mass for the pendulum coincides with the
midpoint, L/2, of the rod gives  l = L/2 - x = 116 mm.

(The exact position of the minimum on the graph is x = 84.4 mm. with l = 112.8 mm)

Section 2:

2a)  l
I

Ml2
1

22100
60

35= = =
mm

mm
mm

        See also Figure 6 on the next page

  Candidate: IPhO ID Question:   1 + 2 Page 3 of 11
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Figure 6. For use in section 2a. Mark all positions where a rotation axis (orthogonal to the
plane of the paper) can be placed without changing the oscillation period. Assume for this
pendulum (drawn on scale, 1:1) that  I/M = 2100 mm2. (Note: In this booklet the size of this
figure is about 75% of the size in the original examination paper.)

Figure 7. For use in section 3b. Indicate the whole area where the reflected light hits when
the pendulum is vertical.

Include this page in your report!

  Candidate: IPhO ID Question:   2 Page 4 of 11
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2b)  Simple method with small uncertainty: Inverted pendulum.

Equation (1) + (2) ⇒ = = + ⇔ = +T T
g

l l g
T

l l1 2 1 2

2

1
2 1 2

2 4π π
( )

NOTE: Independent of I/M !
Used both nuts with one nut at the end to maximise l1 + l2.  Alternately adjusted nut

positions until equal periods T1 = T2 :

T1 = T2 = 1024 ms.
Adding the depth of the two grooves to the measured distance between nuts:
l1 + l2  = (259.6 + 2 . 0.55) mm = 0.2607 m

      g
T

l l= + =
⋅ ⋅

=
4 4 31416 0 2607

9 815
2

1
2 1 2

2π
( )

. .
.

m
(1.024s)

m / s2
2

 ALTERNATIVE 2b-1: Finding I(x). Correct but time consuming.
It is possible to derive an expression for I as a function of x. By making sensible
approximations, this gives:

I x
M

L M
M

L h
x

M
M

NUT ROD( )
= +

+
−

















2 2

12 2

which is accurate to within 0.03 %. Using the correct expression for l as a function of x:

l x x x
M L M h

M
M

M
xCM

ROD NUT ROD( ) = − =
−

−
2

 = 195.3 mm - 0.9773x,

equation (1) can be used on any point (x, T) to find g.  Choosing the point
(85 mm, 964 ms) gives:

g
T

I x
M l x

l x=
⋅

+








 =

⋅ ⋅
=

4 4 31416 0 2311
9 818

2

2

2π ( )
( )

( )
. .

.
m

(0.964s)
m / s2

2

  Candidate: IPhO ID Question:   2 Page 5 of 11
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Using the minimum point on the graph in the way shown below is wrong, since the

curve in 1b) , T x
g

I x
M l x

l x( ) ( )
( )

( )=
⋅

+
2π

 with I(x)/M and l(x) given above, describes a

continuum of different pendulums with changing I(x) and moving  centre of mass.

Equation (1): T
g

I
Ml

l= +2π
 describes one pendulum with fixed I, and does not apply

to the curve in 1b).

INCORRECT 2b-1: At the minimum point we have from Equation (2) and 1c):

l l l I
M1 2 113 1= = = = ±( ) mm  Equation (1) becomes

T
g

l
l

l
g

lmin = + =
2 2

2
2π π

  and

g
l

T
= =

⋅ ⋅
=

8 8 31416 0113
9 60

2

2

2π

min

. .
.

m
(0.964s)

m / s2
2

Another source of error which may accidentally give a reasonable value is using the
wrong value l = (116 ± 1)mm from  «INCORRECT 1c-1»:

INCORRECT 2b-2:  g l
T

= =
⋅ ⋅

=8 8 31416 0116
0 964

9 86
2

2

2

2
π

min

. .
( . )

.
m

s
m / s2

Totally neglecting the mass of the nut but remembering the expression for the moment of
inertia for a thin rod about a perpendicular axis through the centre of mass,  I = ML2/12,
gives from equation (2) for the minimum point: l2 = I/M = L2/12 = 0.01333 m2.  This
value is accidentally only 0.15% smaller than the correct value for I(x)/M  at the mini-
mum point on the curve in 1b):

I x
M

L M
M

L h x
M

M
NUT ROD( . )

.
=

= + + −

















=
84 43

12 2
0 01335

2 2mm
m 2

.

  Candidate: IPhO ID Question:   2 Page 6 of 11

(continued on next page)
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Neglecting the term 
M

M
L hNUT +

−



2

84 43
2

. mm  = 0.00033 m2  is nearly compensated by

omitting the factor 
M

M
ROD =0.977.  However, each of these approximations are of the

order of 2.5 %, well above the accuracy that can be achieved.

INCORRECT 2b-3: At the minimum point equation (2) gives l
I
M

L2
2

12
= = . Then

T
g

l
g

L
g

L
min = = =

2 2 2 2
12

2
3

π π π
   and

( )
g

L
T

= =
⋅ ⋅

⋅
=

4
3

4 31416 0 4000

17321 0964
981

2

2

2

2
π

min

. .

. .
.

m

s
m / s2

2c) Estimating uncertainty in the logarithmic expression for g:

Let S l l g S
T

≡ + ⇒ =1 2

2

2
4π

∆ ∆S T= =0 3 1. mm ms

∆ ∆ ∆g
g

S
S

T
T

= 





+ −





=








 + ⋅











2 2 2 2

2
0 3

260 7
2

1
1024

.
.
mm

mm
ms

ms

     = + = =( . ) ( . ) . .0 0012 0 0020 0 0023 0 23%2 2

∆g = ⋅ =0 0023 9 815 0 022. . .m / s m / s2 2

g = ±( . . )982 0 02 m / s2

The incorrect methods INCORRECT 2b-1, 2b-2 and 2b-3 have a similar expressions for g
as above. With ∆l = 1 mm in INCORRECT 2b-1 and 2b-2 we get ∆g = 0.09 m/s2.

INCORRECT 2b-3 should have ∆l = 0.3 mm and ∆g = 0.02 m/s2.

  Candidate: IPhO ID Question:   2 Page 7 of 11

(cont.)



161

ALTERNATIVE 3 has a very complicated x dependence in g. Instead of differentiating
g(x) it is easier to insert the two values x+∆x and x-∆x in the expression in brackets [ ],
thus finding an estimate for ∆[ ] and then using the same formula as above.

(The official local value for g, measured in the basement of the adjacent building to where the
practical exam was held  is g = 9.8190178 m/s2 with uncertainty in the last digit.)

Section 3.
3a) 3. Cylindrical mirror

4. Concave mirror

Radius of curvature of cylinder, r = 145 mm.  (Uncertainty  approx.  ± 5 mm, not asked for.)

(In this set-up the emitter and detector are placed at the cylinder axis. The radius of curvature
is then the distance between the emitter/detector and the mirror. )

3b) Three drawings, see Figure 7 on page 4 in this Model Answers.

(The key to understanding this set-up is that for a concave cylindrical mirror with a point
source at the cylinder axis, the reflected light will be focused back onto the cylinder axis as a
line segment of length twice the width of the mirror.)

Section 4.
4a)  Vo = 2.464 V    (This value may be different for each set-up.)

4b)  Threads are 1.50 mm /turn. Measured V(y) for each turn. Calculated

[ ] [ ]B y V y V
B
V

V y V
V
B

( ) ( ) ( ) /= − = −0 0
∆
∆

∆
∆

.        (Table not requested)

         See graph on next page.

  Candidate: IPhO ID Question:   2 + 3 + 4 Page 8 of 11
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4c)

B B y y t

y t r

y

y r
0 2 2 2 2

1

= +

+ +
−

+















−

( )
( )

The point (11 mm, 48.5 mT) gives B0 = 0.621 T and (20 mm, 16,8 mT) gives B0 = 0.601 T.
Mean value: B0 = 0.61 T (This value may vary for different magnets.)

Section 5:

5a) Used the spacer and measured T(z) from z = 25 mm to 5.5 mm. (Table is not requested.)

See plot on next page.

  Candidate: IPhO ID Question:   4 + 5 Page 9 of 11

Graph: B(y):
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5b)  l(x = 100 mm) = 97.6 mm (by balancing the pendulum or by calculation as in 1c).

M = MROD + MNUT

Proportionality means: 
1 12

0

T
a

B
Mgl

f z= +










µ
( ) where a is a proportionality constant. Setting

B0 = 0 corresponds to having an infinitely weak magnet or no magnet at all. Removing the

large magnet gives:  T0 = 968 ms and 
1

1 0
0

2T
a

Mgl
f z= + ⋅











µ
( )  or  a

T
=

1

0
2  .

Selecting the point where f(z), see Fig. 5, changes the least with z, i.e., at the maximum, one
has  fmax = 56.3. This point must correspond to the minimum oscillation period, which is
measured to be Tmin = 576 ms.

We will often need the factor

Mgl
B0

0 215 9 82 0 0976
0 61

0 338=
⋅ ⋅

=
. . .

.
. .

kg m / s m
T

Am
2

2

 .

  Candidate: IPhO ID Question:  5 Page 10 of 11

Graph: T(z):
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The magnetic moment then becomes

µ = 





−












= 





−












= ⋅ −Mgl
B f

T
Tmax0

0
2 2

21 1
0338

56 3
968
576

1 11 10
.

.
.

Am
Am

2
2

ALTERNATIVE 5b-1: Not what is asked for: Using two points to eliminate the

proportionality constant a:  Equation (4) or 
1 12

0

T
a

B
Mgl

f z= +










µ
( )  gives:

aT
B

Mgl
f z aT

B
Mgl

f z1
2 0

1 2
2 0

21 1+








 = +











µ µ
( ) ( )

T T
B

Mgl
f z T T

B
Mgl

f z1
2

1
2 0

1 2
2

2
2 0

2+ = +
µ µ

( ) ( )

[ ]µB
Mgl

T f z T f z T T0
1

2
1 2

2
2 2

2
1

2( ) ( )− = −

µ = ⋅
−
−

Mgl
B

T T
T f z T f z0

2
2

1
2

1
2

1 2
2

2( ) ( )

Choosing two points (z1 = 7 mm, T1 = 580.5 ms) and (z2 = 22 mm, T2 = 841ms). Reading
from the graph f(z1) = 56.0 and f(z2)  = 12.0 we get

µ = ⋅
−

⋅ − ⋅
= ⋅ −0 338

841 580
580 56 0 841 12 0

12 10
2 2

2 2
2.

. .
.Am Am2 2

  Candidate: IPhO ID Question:   5 Page 11 of 11
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  Candidate: Total score:     +     +     +     +     =
  Country: Marker’s name:
  Language: Comment:

Marking Form
for the Experimental Competition at the
27th International Physics Olympiad

Oslo, Norway
July 4, 1996

To the marker: Carefully read through the candidate’s exam papers and compare with
the model answer. You may use the transparencies (handed out) when checking the
graph in 1b) and the drawing in 2a). When encountering words or sentences that
require translation, postpone marking of this part until you have consulted the inter-
preter.

Use the table below and mark a circle around the point values to be subtracted. Add
vertically the points for each subsection and calculate the score.
NB: Give score 0 if the value comes out negative for any subsection.
Add the scores for each subsection and write the sum in the ‘Total score’- box at the
upper right. Keep decimals all the way.

If you have questions, consult the marking leader. Good luck, and remember that you
will have to defend your marking in front of the team leaders.

(Note: The terms “INCORRECT 2b-1” found in the table for subsection 2c) and similar terms
elsewhere, refer to the Model Answer, in which anticipated incorrect answers were included
and numbered for easy reference.)
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Subsection 1a) Deficiency
No answer

x lacks unit
Other than 0 or 1 decimal in x

x does not cover the interval 10 mm - 160 mm
T lacks unit

T given with other than 1 or 0.5 millisecond accuracy
Fewer than 11 measuring points (15 mm sep.). Subtr. up to

Systematic error in x (e.g. if measured from the top of the nut so that the
first x = 0 mm)

If not aware of doubling of the timer period
 Other (specify):

                                                     Score for subsection 1a:   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.1
0.2

0.2
0.2

=

Subsection 1b) Deficiency
No answer

 Lacks “x [(m)m]” on horizontal axis
1 mm on paper does not correspond to 1 mm in x

 Fewer than 3 numbers on horizontal axis
Lacks “T [(m)s]” on vertical axis

1 mm on paper does not correspond to 1 ms in T
Fewer than 3 numbers on vertical axis

Measuring points not clearly shown (as circles or crosses)
More than 5 ms deviation in more than 2 measuring points on the graph

Wrong answer to the questions (x-values give full score if correct number
of values: 0, 2, 1)

 Other (specify):
Score for subsection 1b):   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.1
0.1
0.2
0.2

0.2

=

Subsection 1c) Deficiency
No answer

x outside the interval 81 - 87 mm. Subtract up to
x lacks unit

x given more (or less) accurately than in whole millimeters
l lacks unit

l given more (or less) accurately than the nearest mm
Wrong formula (e.g. l = 200.0 mm - x ) or something other than l = xCM - x

If it is not possible to see which method was used to find the center of mass
 Other (specify):

Score for subsection 1c):   2.0 -

Subtract
2.0
0.4
0.1
0.3
0.1
0.3
0.6
0.2

=
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Subsection 2a) Deficiency
No answer

If drawn straight (vertical) lines
If points are drawn

Other than 4 regions are drawn
Inaccurate drawing (> ±  2 mm )

Lacks the values l1 = 60 mm, l2 = 35 mm on figure or text
 Other (specify):

Score for subsection 2a):   1.5 -

Subtract
1.5
0.4
0.5
0.5
0.3
0.3

=

Subsection 2b) Deficiency
No answer

Lacks (derivation of) formula for g
For INVERTED PENDULUM: Lacks figure

Values from possible new measurements not given
Incomplete calculations

If hard to see which method was used
Used the formula for INVERTED PENDULUM but read l1 and l2 from

graph in 1b) by a horizontal line for a certain T
Used one of the other incorrect methods

Other than 3 (or 4) significant figures in the answer
g lacks unit m/s2

 Other (specify):
Score for subsection 2b):   2.5 -

Subtract
2.5
0.3
0.2
0.3
0.3
0.4

1.5
2.0
0.3
0.1

=

Subsection 2c) Deficiency
No answer

Wrong expression for ∆g/g or ∆g. Subtract up to
For INVERTED PENDULUM: If 0.3 mm >∆(l1+l2)  > 0.5 mm

For ALTERNATIVE 2c-1: If ∆[]  > 0.1 mm
For INCORRECT 2c-1 and 2c-2: If 1 mm > ∆l  > 2 mm

For INCORRECT 2c-3: If 0.3 mm > ∆L  > 0.4 mm
For all methods: If ∆T ≠  1 (or 0.5) ms

Error in the calculation of ∆g
Lacks answer including g ± ∆g with 2 decimals

g ± ∆g  lacks unit
 Other (specify):

Score for subsection 2c):   2.5 -

Subtract
2.5
0.5
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.1

=
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Subsection 3a) Deficiency
No answer

Lacks point 3. cylindrical mirror
Lacks point 4. concave mirror

Includes other points (1, 2 or 5), subtract per wrong point:
Lacks value for radius of curvature

If r < 130 mm or r > 160 mm, subtract up to
If r is given more accurately than hole millimeters

 Other (specify):
Score for subsection 3a):   1.0 -

Subtract
1.0
0.3
0.3
0.3
0.4
0.2
0.2

=

Subsection 3b) Deficiency
No answer

Lacks side view figure
Errors or deficiencies in the side view figure. Subtract up to

Lacks top view figure
Errors or deficiencies in the top view figure. Subtract up to

Drawing shows light focused to a point
Drawing shows light spread out over an ill defined or wrongly shaped

surface
Line/surface is not horizontal

Line/point/surface not centered symmetrically on detector
Line/point/surface has length different from twice the width of the nut

(i.e. outside the interval 10 - 30 mm)
 Other (specify):

Score for subsection 3b):   2.0 -

Subtract
2.0
0.6
0.4
0.6
0.4
0.3

0.3
0.2
0.2

0.1

=
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Subsection 4a) Deficiency
No answer

Vo lacks unit V
Less than 3 decimals in Vo

Incorrect couplings (would give Vo < 2.3 V or Vo > 2.9 V)
 Other (specify):

Score for subsection 4a):   1.0 -

Subtract
1.0
0.1
0.1
0.8

=

Subsection 4b) Deficiency
No answer

Forgotten Vo or other errors in formula for B
Lacks “y [(m)m]” on horizontal axis

Fewer than 3 numbers on horizontal axis
Lacks “B [(m)T]” on vertical axis

Fewer than 3 numbers on vertical axis
Fewer than 9 measuring points. Subtract up to

Measuring points do not cover the interval 3.5 mm - 26 mm
Measuring points not clearly shown (as circles or crosses)

Error in data or unreasonably large spread in measuring points. Subtract
up to

 Other (specify):
Score for subsection 4b):   1.5 -

Subtract
1.5
0.2
0.1
0.1
0.1
0.1
0.2
0.2
0.1

0.5

=

Subsection 4c) Deficiency
No answer

Incorrect formula for Bo
If used only one measuring point

If used untypical points on the graph
Errors in calculation of mean value for Bo

Bo  lacks unit T
Other than two significant figures in (the mean value of) Bo

Bo < 0.4 T or Bo > 0.7 T. Subtract up to
 Other (specify):

Score for subsection 4c):   1.5 -

Subtract
1.5
0.3
0.4
0.3
0.2
0.1
0.2
0.2

=
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Subsection 5a) Deficiency
No answer

Lacks “z [(m)m]” on horizontal axis
Fewer than 3 numbers on horizontal axis

Lacks “T [(m)s]” on vertical axis
Fewer than 3 numbers on vertical axis

Fewer than 8 measuring points. Subtract up to
Measuring points not clearly shown (as circles or crosses)

Measuring points do not cover the interval 5.5 mm - 25 mm
Error in data (e.g. plotted 2T instead of T) or unreasonably large spread

in measuring points. Subtr. up to
 Other (specify):

Score for subsection 5a):   1.0 -

Subtract
1.0
0.1
0.1
0.1
0.1
0.2
0.1
0.2

0.5

=

Subsection 5b) Deficiency
No answer

Forgotten center of mass displacement in l (used l = 100 mm)
Used ALTERNATIVE 5b-1

Lacks method for finding the proportionality factor a
Not found correct proportionality factor a

Used another point than the maximum of f(z)
Incorrect reading of f(z)

Used MROD or another incorrect value for M
Incorrect calculation of µ
µ  lacks unit (Am2 or J/T)

More than 2 significant figures in µ
 Other (specify):

Score for subsection 5b):   3.0 -

Subtract
3.0
0.3
1.0
2.5
0.3
0.1
0.1
0.2
0.3
0.2
0.3

=

Total points:

Total for section 1 (max. 4 points):
Total for section 2 (max. 5 points):
Total for section 3 (max. 3 points):
Total for section 4 (max. 4 points):
Total for section 5 (max. 4 points):
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The last preparations

The problem for the experimental competition was discussed by the leaders and
the organizers the evening before the exam. At this meeting the equipment was
demonstrated for the first time (picture).

After the meeting had agreed on the final text (in English), the problems had to
be translated into the remaining 36 languages. One PC was available for each
nation for the translation process (see picture below). The last nation finished
their translation at about 4:30 a.m. in the morning, and the competition started
at 0830. Busy time for the organizers! Examples of the different translations
are given on the following pages.

Photo: Børge Holme

Photo: Børge Holme
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PART 4

Theoretical Competition

Exam commission page   98
Problems in English page   99
Solutions in English page 106
Problems in three other languages
and back-translations of these page 117
Examples of student papers page 130
Photos from the grading process page 140

Example of  «Old Masters´» original theoretical work.
(From: The collected papers of Albert Einstein, Vol. 4, 1995)
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27th INTERNATIONAL PHYSICS OLYMPIAD
OSLO, NORWAY

THEORETICAL COMPETITION
JULY 2 1996

Time available: 5 hours

READ  THIS  FIRST :
1.  Use only the pen provided
2.  Use only the marked side of the paper
3.  Each problem should be answered on separate sheets
4.  In your answers please use primarily equations and numbers,
     and as little text as possible
5. Write at the top of every sheet in your report:

• Your candidate number (IPhO identification number)
• The problem number and section identification, e.g. 2/a
• Number each sheet consecutively

6. Write on the front page the total number of sheets in your report

This set of problems consists of 7 pages.
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PROBLEM 1

(The five parts of this problem are unrelated)

a)  Five 1Ω resistances are connected as shown in the figure. The resistance in
the conducting wires (fully drawn lines) is negligible.

Determine the resulting resistance R between A and B. (1 point)
___________________________________________________________________________

b)

A skier starts from rest at point A and slides down the hill, without turning or
braking. The friction coefficient is  µ. When he stops at point B, his horizontal
displacement is s. What is the height difference h between points A and B?
(The velocity of the skier is small so that the additional pressure on the snow
due to the curvature can be neglected. Neglect also the friction of air and the
dependence of µ on the velocity of the skier.) (1.5 points)

___________________________________________________________________________

c)  A thermally insulated piece of metal is heated under atmospheric pressure
by an electric current so that it receives electric energy at a constant power P.
This leads to an increase of the absolute temperature T of the metal with time t
as follows:

[ ]T t T a t t( ) ( ) .= + −0 0
1 41

Here a, t0 and T0 are constants. Determine the heat capacity C Tp ( ) of the metal
(temperature dependent in the temperature range of the experiment).  (2 points)
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d)  A black plane surface at a constant high temperature Th  is parallel to an-
other black plane surface at a constant lower temperature Tl . Between the
plates is vacuum.

In order to reduce the heat flow due to radiation, a heat shield consisting of two
thin black plates, thermally isolated from each other, is placed between the
warm and the cold surfaces and parallel to these. After some time stationary
conditions are obtained.

By what factor ξ is the stationary heat flow reduced due to the presence of the
heat shield?   Neglect end effects due to the finite size of the surfaces.  (1.5
points)
___________________________________________________________________________

e)  Two straight and very long nonmagnetic conductors C +  and C − , insulated
from each other, carry a current I in the positive and the negative z direction,
respectively. The cross sections of the conductors (hatched in the figure) are
limited by circles of diameter D in the x-y plane, with a distance D/2 between
the centres. Thereby the resulting cross sections each have an area
( )1

12
1
8π + 3 D2.The current in each conductor is uniformly distributed over

the cross section.

Determine the magnetic field B(x,y) in the space between the conductors.
(4 points)
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PROBLEM 2

The space between a pair of coaxial cylindrical conductors is evacuated. The
radius of the inner cylinder is a, and the inner radius of the outer cylinder is b,
as shown in the figure below. The outer cylinder, called the anode, may be
given  a positive potential V relative to the inner cylinder. A static homogene-
ous magnetic field 

r
B  parallel to the cylinder axis, directed out of the plane of

the figure, is also  present. Induced charges in the conductors are neglected.

We study the dynamics of electrons with rest mass m and charge _ e. The elec-
trons  are released at the surface of the inner cylinder.

a)  First the potential V is turned on, but 
r
B  = 0.  An electron is set free with

negligible velocity at the surface of the inner cylinder. Determine its speed v
when it hits the anode. Give the answer both when a non-relativistic treatment
is sufficient, and when it is not. (1 point)

For the remaining parts of this problem a non-relativistic treatment suffices.

b)  Now V = 0, but the homogeneous magnetic field 
r
B  is present. An electron

starts out with an initial velocity 
r
v 0  in the radial direction.  For magnetic fields

larger than a critical value Bc , the electron will not reach the anode. Make a
sketch of the trajectory of the electron when B is slightly more than Bc . Deter-
mine Bc . (2 points)

From now on both the potential V and the homogeneous magnetic field 
r
B  are

present.
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c) The magnetic field will give the electron a non-zero angular momentum  L
with respect to the cylinder axis. Write down an equation for the rate of change
dL/dt of the angular momentum. Show that this equation implies that

L keBr− 2

is constant during the motion, where k is a definite pure number. Here r is the
distance from the cylinder axis. Determine the value of k. (3 points)

d)  Consider an electron, released from the inner cylinder with negligible ve-
locity,  that does not reach the anode, but has a maximal distance from the cyl-
inder axis equal to rm . Determine the speed v  at the point where the radial dis-
tance is maximal, in terms of rm .  (1 point)

e)  We are interested in using the magnetic field to regulate the electron current
to the anode. For B larger than a critical magnetic field Bc , an electron, re-
leased with negligible velocity, will not reach the anode. Determine Bc .
(1 point)

f)  If the electrons are set free by heating the inner cylinder an electron will in
general have an initial nonzero velocity at the surface of the inner cylinder. The
component of the initial velocity parallel to 

r
B  is v B , the components

orthogonal to 
r
B  are vr  (in the radial direction) and vϕ (in the azimuthal direc-

tion, i.e. orthogonal to the radial direction).

Determine for this situation the critical magnetic field Bc  for reaching the an-
ode. (2 points)
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PROBLEM 3

In this problem we consider some gross features of the magnitude of mid-ocean
tides on earth. We simplify the problem by making the  following assumptions:

   (i) The earth and the moon are considered to be an isolated system,
   (ii) the distance between the moon and the earth is assumed to be constant,
   (iii) the earth is assumed to be completely covered by an ocean,
   (iv) the dynamic effects of the rotation of the earth around its axis are

neglected, and
   (v) the gravitational attraction of the earth can be determined as if all mass

were concentrated at the centre of the earth.

The following data are given:
Mass of the earth: M = 5.98 . 1024 kg
Mass of the moon: Mm  = 7.3 . 1022 kg
Radius of the earth: R = 6.37 . 106 m
Distance between centre of the earth and centre of the moon:
L = 3.84 . 108 m
The gravitational constant:  G = 6.67 . 10 -11 m3 kg-1 s-2.

a) The moon and the earth rotate with angular velocity ω about their common
centre of mass, C. How far is C from the centre of the earth? (Denote this dis-
tance by l.)

Determine the numerical value of ω.  (2 points)

We now use a frame of reference that is co-rotating with the moon and the
center of the earth around C. In this frame of reference the shape of the liquid
surface of the earth is static.
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In the plane P through C and orthogonal to the axis of rotation the position of a
point mass on the liquid surface of the earth can be described by polar coordi-
nates r, ϕ as shown in the figure. Here r is the distance from the centre of the
earth.

We will study the shape
r (ϕ) = R + h (ϕ)

of the liquid surface of the earth in the plane P.

b)  Consider a mass point (mass m) on the liquid surface of the earth (in the
plane P). In our frame of reference it is acted upon by a centrifugal force and
by gravitational forces from the moon and the earth. Write down an expression
for the potential energy corresponding to these three forces.

Note: Any force F(r),  radially directed with respect to some origin, is the nega-
tive derivative of a spherically symmetric potential energy V(r):
F r V r( ) ( ).= − ′  (3 points)

c)  Find, in terms of the given quantities M, Mm  , etc, the approximate form h(ϕ) of
the tidal bulge. What is the difference in meters between high tide and low tide in this
model?

You may use the approximate expression

valid for a much less than unity.

In this analysis make simplifying approximations whenever they are reasonable. (5
points)

1
1 2

1 3 1
2

1
2

2 2

+ −
≈ + + −

a a
a a

cos
cos ( cos ),
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27th INTERNATIONAL PHYSICS OLYMPIAD
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THEORETICAL COMPETITION
JULY 2 1996

Solution Problem 1

a)  The system of resistances can be redrawn as shown in the figure:

The equivalent drawing of the circuit shows that the resistance between point c
and point A is 0.5Ω, and the same between point d and point B. The resistance
between points A and B thus consists of two connections in parallel: the direct
1Ω connection and a connection consisting of two 0.5Ω  resistances in series,
in other words two parallel 1Ω  connections. This yields

R = 0.5 Ω .
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b)  For a sufficiently short horizontal displacement ∆s the path can be con-
sidered straight. If the corresponding length of the path element is ∆L, the
friction force is given by

and the work done by the friction force equals  force times displacement:

Adding up, we find that along the whole path the total work done by friction
forces i   µ   mg s . By energy conservation this must equal the decrease mg h in
potential energy of the skier. Hence

h =  µs.

___________________________________________________________________________

c)  Let the temperature increase in a small time interval dt be dT.  During this time
interval the metal receives an energy  P dt.

The heat capacity is the ratio between the energy supplied and the temperature increase:

The experimental results correspond to

Hence

(Comment: At low, but not extremely low, temperatures heat capacities of met-
als follow such a T 3 law.)

dT
dt

T a a t t T a T
T

= + − = 





−0
0

3 4
0

0
3

4
1

4
[ ( )] ./

C Pdt
dT

P .p = =
dT dt

C P 4P
aT

T .p 4
3= =

dT dt 0

µ mg s
L

∆
∆

µ µmg s
L

L mg s∆
∆

∆ ∆⋅ = .
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d)

Under stationary conditions the net heat flow is the same everywhere:

Adding these three equations we get

where J0  is the heat flow in the absence of the heat shield. Thus  ξ = J/J0 takes the
value

ξ = 1/3.

___________________________________________________________________________

e)  The magnetic field can be determined as the superposition of the fields of
two cylindrical conductors, since the effects of the currents in the area of inter-
section cancel.  Each of the cylindrical conductors must carry a larger current
I′, determined so that the fraction I of it is carried by the actual cross section
(the moon-shaped area). The ratio between the currents I and I′ equals the ratio
between the cross section areas:

Inside one cylindrical conductor carrying a current I′ Ampère’s law yields at a
distance r from the axis an azimuthal field

J T Th= −σ ( )4
1
4

J T T= −σ ( )1
4

2
4

J T Tl= −σ ( )2
4 4

3 4 4
0J T T Jh l= − =σ ( ) ,

I
I

D
D′

=
+

=
+( ) .

π

π

π12
3

8
2

4
2

2 3 3
6π

B
r

I r
D

I r
Dφ π

µ
π

µ
π

=
′π   

=
′0

2

4
2

0
22

2 .
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The cartesian components of this are

For the superposed fields, the currents are      I′ and the corresponding cylinder
axes are located  at x = m D/4.

The two x-components add up to zero, while the y-components yield

i.e., a constant field. The direction is along the positive y-axis.

Solution Problem 2

a)  The potential energy gain eV is converted into kinetic energy. Thus

                                                       (non-relativistically)

                                                (relativistically).

Hence

                                                                                                                         (1)

 b)  When V = 0 the electron moves in a homogeneous static magnetic field. The
magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a
circle.  The initial velocity is tangential to the circle.

The radius R of the orbit (the “cyclotron radius”) is determined by equating the
centripetal force and the Lorentz force:

B B y
r

I y
Dx = − = −

′
φ

µ
π

2 0
2 ; B B x

r
I x

Dy = =
′

φ
µ2 0

2 .
π

B
D

I x D I x D I
D

I
Dy = ′ + − ′ − =

′
=

+
2 4 4 6

2 3 3
0
2

0 0µ
π

[ ( / ) ( / )]
( )

,µ µ
ππ

1
2 m eVv 2 =

mc
1

mc eV
2

2

−
− =

v 2 2c

v =
−

+









2eV m                        

c 1 mc
mc eV

          
2

2
2

(non - relativistically)

( ) (relativistically).

 m
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i.e.

                                                                                                                          (2)

From the figure we see that in the critical case the radius R of the circle satisfies

By squaring we obtain
                                    ,

i.e.
                                                                              .

Insertion of this value for the radius into the expression (2) gives the critical field

c)  The change in angular momentum with time is produced by a torque. Here
the azimuthal component Fφ  of the Lorentz force                            provides a
torque  Fφ r. It is only the radial component vr = dr/dt of the velocity that pro-
vides an azimuthal Lorentz force. Hence

which can be rewritten as

dL
dt

eBr dr
dt

= ,

d
dt

L eBr( ) .− =
2

2
0

R b a / 2b2 2= −( )

B m
eR

2bm
b a ec

0 0
2 2= =

−
v v

( )
.

a R b 2bR R2 2 2 2+ = − +

m
R

0
2v

eBv  =0 ,

m
eR

0v
B = .

a R2 2+ = b - R

F e B
→ →

= − ×( ) r
v
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Hence
                                                                                                                          (3)

is constant during the motion. The dimensionless number k in the problem text is
thus k = 1/2.

d)  We evaluate the constant C, equation (3), at the surface of the inner cylinder
and at the maximal distance  rm :

which gives

                                                                          (4)

Alternative solution: One may first determine the electric potential V(r) as
function of the radial distance. In cylindrical geometry the field falls off inversely
proportional to r, which requires a logarithmic potential, V(s) = c1 ln r + c2.
When the two constants are determined to yield V(a) = 0 and V(b) = V we have

The gain in potential energy,  sV(rm), is converted into kinetic energy:

Thus

                                                                                                                         (5)

(4) and (5) seem to be different answers. This is only apparent since rm is not an in-
dependent parameter, but determined by B and V so that the two answers are
identical.

e)  For the critical magnetic field the maximal distance  rm  equals b, the radius of the
outer cylinder, and the speed at the turning point is then

C L eBr= − 1
2

2

0 1
2

2 1
2

2− = −eBa mvr eBrm m

v
eB r a

mr
m

m

=
−( ) .

2 2

2

V r V r a
b a

( ) ln( / )
ln( / )

.=

1
2

2mv eV
r a
b a
m=

ln( / )
ln( / )

.

v
eV
m

r a
b a
m=

2 ln( / )
ln( / )

.

v
eB b a

mb
=

−( ) .
2 2

2
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Since the Lorentz force does no work, the corresponding kinetic energy
equals eV (question a):

.

The last two equations are consistent when

The critical magnetic field for current cut-off is therefore

f)  The Lorentz force has no component parallel to the magnetic field, and conse-
quently the velocity component  vB  is constant under the motion. The corresponding
displacement parallel to the cylinder axis has no relevance for the question of reach-
ing the anode.

Let v  denote the final azimuthal speed of an electron that barely reaches the anode.
Conservation of energy implies that

giving
                                                                                                                        (6)

Evaluating the constant C  in (3) at both cylinder surfaces for the critical situation we
have

Insertion of the value (6) for the velocity  v   yields the critical field

v v v eV mr= + +2 2 2 / .φ

1
2

2 2 1
2

2m v v v m v vr( ) ( ),B
2

B
2eV =+ + + +φ

mv a eB a mvb eB bc c− = −1
2

2 1
2

2.φ

[ ]B
m vb v a
e b a

mb
e b a

v v eV m v a bc r=
−

−
=

−
+ + −

2 2 22 2 2 2
2 2( )

( ) ( )
/ /   .φ

φ φ

1
2

2mv

B b
b a

mV
ec =

−
2 2

2 2 .

eB b a
mb

e V m( ) .
2 2

2
2−

=

v eV m= 2
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Solution Problem 3

a)  With the centre of the earth as origin, let the centre of mass C be located
at     . The distance l is determined by

M l = Mm (L - l),
which gives

                                                                                                                        (1)

less than R, and thus inside the earth.

The centrifugal force must balance the gravitational attraction between the moon
and the earth:

which gives

                                                                                                                        (2)

 (This corresponds to a period  2π/ω = 27.2 days.) We have used (1) to elimi-
nate l.

b)  The potential energy of the mass point m consists of three contributions:

(1) Potential energy because of rotation (in the rotating frame of reference, see
the problem text),

where      is the distance from C. This corresponds to the centrifugal force
mω 2r1, directed outwards from C.

 (2) Gravitational attraction to the earth,

(3) Gravitational attraction to the moon,
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where       is the distance from the moon.

Describing the position of m by polar coordinates r, φ  in the plane orthogonal to the
axis of rotation (see figure), we have

Adding the three potential energy contributions, we obtain

                                                                                                                          (3)

Here l is given by (1) and

c)  Since the ratio r/L = a is very small, we may use the expansion

Insertion into the expression (3) for the potential energy gives

                                                                                                                          (4)

apart from a constant. We have used that

when the value of  ω2 , equation (2), is inserted.
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The form of the liquid surface is such that a mass point has the same energy V every-
where on the surface. (This is equivalent to requiring no net force tangential to the
surface.) Putting

r = R + h,

where the tide h is much smaller than R, we have approximately

as well as

Inserting this, and the value (2) of ω into (4), we have

                                                                                                                         (5)

again apart from a constant.

The magnitude of the first term on the right-hand side of (5) is a factor

smaller than the second term, thus negligible. If the remaining two terms in equation
(5) compensate each other, i.e.,

then the mass point m has the same energy everywhere on the surface. Here   r2  can
safely be approximated by  R2 , giving the tidal bulge

The largest value                                 occurs for φ = 0 or π, in the direction of
the moon or in the opposite direction, while the smallest value
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corresponds to  φ = π/2 or 3π/2.

The difference between high tide and low tide is therefore

(The values for high and low tide are determined up to an additive constant, but the
difference is of course independent of this.)

Here we see the Exam Officer, Michael Peachey (in the middle), with his helper
Rod Jory (at the left), both from Australia, as well as the Chief examiner, Per

Chr. Hemmer. The picture was taken in a silent moment during the theory
examination. Michael and Rod had a lot of experience from the 1995 IPhO in

Canberra, so their help was very effective and highly appreciated!
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