
 

EXPERIMENTAL PROBLEM 1 

 

DETERMINATION OF THE WAVELENGTH OF A DIODE LASER 

 

 MATERIAL 
 

 In addition to items 1), 2) and 3), you should use: 

 

4)  A lens mounted on a square post (LABEL C). 

5)  A razor blade in a slide holder to be placed in acrylic support, (LABEL D1) and 

mounted on sliding rail (LABEL D2). Use the screwdriver to tighten the support if 

necessary. See photograph for mounting instructions. 

6)  An observation screen with a caliper scale (1/20 mm) (LABEL E). 

7)  A magnifying glass (LABEL F). 

8)  30 cm ruler (LABEL G). 

9)  Caliper (LABEL H). 

10) Measuring tape (LABEL I). 

11) Calculator.  

12) White index cards, masking tape, stickers, scissors, triangle squares set. 

13) Pencils, paper, graph paper.  

 

 

 
 

Razor blade in a slide holder to be placed in acrylic support (LABEL D1) and mounted on 

sliding rail (LABEL D2). 

 



EXPERIMENT DESCRIPTION 

 

 
You are asked to determine a diode laser wavelength. The particular feature of this 

measurement is that no exact micrometer scales (such as prefabricated diffraction gratings) 

are used. The smallest lengths measured are in the millimetric range. The wavelength is 

determined using light diffraction on a sharp edge of a razor blade. 

 

 

  

                           
Figure 1.1 Typical interference fringe pattern. 

 

 

 

 

Once the laser beam (A) is reflected on the mirror (B), it must be made to pass through a 

lens (C), which has a focal length of a few centimeters. It can now be assumed that the focus 

is a light point source from which a spherical wave is emitted. After the lens, and along its 

path, the laser beam hits a sharp razor blade edge as an obstacle. This can be considered to 

be a light source from which a cylindrical wave is emitted. These two waves interfere with 

each other, in the forward direction, creating a diffractive pattern that can be observed on a 

screen. See Figure 1.1 with a photograph of a typical pattern. 

 

 

 

 

There are two important cases, see Figures 1.2 and 1.3.  

 

 



 
 

 

Figure 1.2. Case (I). The razor blade is before the focus of the lens. Figure is not at scale. B 

in this diagram is the edge of the blade and F is the focal point. 

 

 

 
 

Figure 1.3. Case (II). The razor blade is after the focus of the lens. Figure is not at scale. B 

in this diagram is the edge of the blade and F is the focal point.  

 

 

 

 

 

 



EXPERIMENTAL SETUP 
 

Task 1.1 Experimental setup (1.0 points). Design an experimental setup to obtain the 

above described interference patterns. The distance L0 from the focus to the screen should 

be much larger than the focal length.  

 

• Make a sketch of your experimental setup in the drawing of the optical table 

provided. Do this by writing the LABELS of the different devices on the drawing of 

the optical table. You can make additional simple drawings to help clarify your 

design.  

• You may align the laser beam by using one of the white index cards to follow the 

path.  

• Make a sketch of the laser beam path on the drawing of the optical table and write 

down the height h of the beam as measured from the optical table.  

 

WARNING: Ignore the larger circular pattern that may appear. This is an effect due 

to the laser diode itself.  

 

Spend some time familiarizing yourself with the setup. You should be able to see of the 

order of 10 or more vertical linear fringes on the screen. The readings are made using the 

positions of the dark fringes. You may use the magnifying glass to see more clearly the 

position of the fringes. The best way to observe the fringes is to look at the back side of 

the illuminated screen (E). Thus, the scale of the screen should face out of the optical table. 

If the alignment of the optical devices is correct, you should see both patterns (of Cases I 

and II) by simply sliding the blade (D1) through the rail (D2). 

 

THEORETICAL CONSIDERATIONS 
 

Refer to Figure 1.2  and 1.3 above. There are five basic lengths: 

 

 L0 : distance from the focus to the screen. 

 Lb  : distance from the razor blade to the screen, Case I. 

 La  : distance from the razor blade to the screen, Case II. 

 LR (n) : position of the n-th dark fringe for Case I.  

 LL (n) : position of the n-th dark fringe for Case II.  

 

The first dark fringe, for both Cases I and II, is the widest one and corresponds to n = 0. 

 

Your experimental setup must be such that LR (n) << L0,Lb  for Case I and LL (n) << L0,La  

for Case II. 

 

The phenomenon of wave interference is due to the difference in optical paths of a wave 

starting at the same point. Depending on their phase difference, the waves may cancel each 



other (destructive interference) giving rise to dark fringes; or the waves may add 

(constructive interference) yielding bright fringes. 

 

A detailed analysis of the interference of these waves gives rise to the following condition to 

obtain a dark fringe, for Case I:  

 

∆ I(n) = n + 5

8

 
 
 

 
 
 λ        with     n = 0, 1, 2, …    (1.1) 

 

and for Case II: 

 

∆ II(n) = n + 7

8

 
 
 

 
 
 λ      with     n = 0, 1, 2, …    (1.2) 

 

where λ  is the wavelength of the laser beam, and ∆ I and ∆ II are the optical path differences 

for each case. 

 

The difference in optical paths for Case I is, 

 

∆ I(n) = (BF + FP) − BP      for each     n = 0, 1, 2, …  (1.3) 

 

while for Case II is, 

 

∆ II(n) = (FB + BP) − FP        for each     n = 0, 1, 2, …  (1.4) 

 

 

Task 1.2 Expressions for optical paths differences (0.5 points). Assuming LR (n) << L0,Lb  

for Case I and LL (n) << L0,La  for Case II in equations (1.3) and (1.4) (make sure your setup 

satisfies these conditions), find approximated expressions for ∆ I(n)  and ∆ II(n)  in terms of 

L0,  Lb ,  La,  LR (n) and LL (n). You may find useful the approximation 1+ x( )r ≈1+ rx  if 

x <<1.  

 

The experimental difficulty with the above equations is that L0, LR (n)  and  LL (n)  cannot be 

accurately measured. The first one because it is not easy to find the position of the focus of 

the lens, and the two last ones because the origin from which they are defined may be very 

hard to find due to misalignments of your optical devices.  

 

To solve the difficulties with LR (n)  and LL (n) , first choose the zero (0) of the scale of  the 

screen (LABEL E) as the origin for all your measurements of  the fringes. Let 0Rl  and 0Ll  be 

the (unknown) positions from which LR (n)  and )(nLL  are defined. Let lR (n)  and lL (n)  be 

the positions of the fringes as measured from the origin (0) you chose. Therefore 

 

LR (n) = lR (n) − l0R        and        LL (n) = lL (n) − l0L    (1.5) 



 

 PERFORMING THE EXPERIMENT. DATA ANALYSIS. 
 

Task 1.3 Measuring the dark fringe positions and locations of the blade (3.25 points).  

 

• For both Case I and Case II, measure the positions of the dark fringes lR (n)  and 

lL (n)  as a function of the number fringe n. Write down your measurements in Table 

I; you should report no less than 8 measurements for each case.  

• Report also the positions of the blade Lb  and La , and indicate with its LABEL the 

intrument you used. 

• IMPORTANT SUGGESTION: For purposes of both simplification of analysis and 

better accuracy, measure directly the distance d = Lb − La  with a better accuracy than 

that of Lb  and La ; that is, do not calculate it from the measurements of Lb  and La . 

Indicate with its LABEL the instrument you used. 

 

Make sure that you include the uncertainty of your measurements.  

 

Task 1.4 Data analysis. (3.25 points). With all the previous information you should be able 

to find out the values of 0Rl  and 0Ll , and, of course, of the wavelength λ .  

 

• Devise a procedure to obtain those values. Write down the expressions and/or 

equations needed.  

• Include the analysis of the errors. You may use Table I or you can use another one to 

report your findings; make sure that you label clearly the contents of the columns of 

your tables.  

• Plot the variables analyzed. Use the graph paper provided. 

• Write down the values for 0Rl  and 0Ll , with uncertainties.  

 

Task 1.5 Calculating λ . Write down the calculated value for λ . Include its uncertainty and 

the analysis to obtain it. SUGGESTION:  In your formula for λ , wherever you find 

Lb − La( ) replace it by d  and use its measured value. (2 points).  

 

  

 



EXPERIMENTAL PROBLEM 2 

BIREFRINGENCE OF MICA 

 
In this experiment you will measure the birefringence of mica (a crystal widely used in 

polarizing optical components). 

 

MATERIAL 
 

 In addition to items 1), 2) and 3), you should use, 

 

14) Two polarizing films mounted in slide holders, each with an additional acrylic 

support (LABEL J). See photograph for mounting instructions. 

15)  A thin mica plate mounted in a plastic cylinder with a scale with no numbers; 

acrylic support for the cylinder (LABEL K). See photograph for mounting 

instructions. 

16)  Photodetector equipment. A photodetector in a plastic box, connectors and foam 

support. A multimeter to measure the voltage of the photodetector (LABEL L). 

See photograph for mounting  and connecting instructions. 

17) Calculator. 
18) White index cards, masking tape, stickers, scissors, triangle squares set. 

19) Pencils, paper, graph paper.  
 

                       
 

Polarizer mounted in slide holder with 

acrylic support (LABEL J). 

 

Thin mica plate mounted in cylinder with 

a scale with no numbers, and acrylic 

support (LABEL K).



 

 
A photodetector in a plastic box, connectors and foam support. A multimeter to measure the 

voltage of the photodetector (LABEL L). Set the connections as indicated. 

 

DESCRIPTION OF THE PHENOMENON 
 

Light is a transverse electromagnetic wave, with its electric field lying on a plane 

perpendicular to the propagation direction and oscillating in time as the light wave travels.  

 

If the direction of the electric field remains in time oscillating  along a single line, the wave 

is said to be linearly polarized, or simply, polarized. See Figure 2.1. 

 

 
 

Figure 2.1 A wave travelling in the y-direction and polarized in the z-direction. 

y 



 

A polarizing film (or simply, a polarizer) is a material with a privileged axis parallel to its 

surface, such that, transmitted light emerges polarized along the axis of the polarizer. Call 

(+) the privileged axis and (-) the perpendicular one.  

 

                    
Figure 2.2 Unpolarized light normally incident on a polarizer. Transmitted light is polarized 

in the (+) direction of the polarizer. 

 

Common transparent materials (such as window glass), transmit light with the same 

polarization as the incident one, because its index of refraction does not depend on the 

direction and/or polarization of the incident wave. Many crystals, including mica, however, 

are sensitive to the direction of the electric field of the wave. For propagation perpendicular 

to its surface, the mica sheet has two characteristic orthogonal axes, which we will call Axis 

1 and Axis 2. This leads to the phenomenon called birefringence. 

 
Figure 2.3  Thin slab of mica with its two axes, Axis 1 (red) and Axis 2 (green). 

 

Let us analyze two simple cases to exemplify the birefringence. Assume that a wave 

polarized in the vertical direction is normally incident on one of the surfaces of the thin 

slab of mica. 

 



Case 1) Axis 1 or Axis 2 is parallel to the polarization of the incident wave. The trasmitted 

wave passes without changing its polarization state, but the propagation is characterized as if 

the material had either an index of refraction n1 or n2 . See Figs. 2.4 and 2.5. 

 
 

Figure 2.4 Axis 1 is parallel to polarization of incident wave. Index of refraction is n1. 

 
Figure 2.5 Axis 2 is parallel to polarization of incident wave. Index of refraction is n2 . 

 

Case 2) Axis 1 makes an angle θ  with the direction of polarization of the incident wave. 
The transmitted light has a more complicated polarization state. This wave, however, can be 

seen as the superposition of two waves with different phases, one that has polarization 

parallel to the polarization of the incident wave (i.e. "vertical") and another that has 

polarization perpendicular to the polarization of the incident wave (i.e. "horizontal").  

 



 
Figure 2.6 Axis 1 makes and angle θ  with polarization of incident wave 
Call IP  the intensity of the wave transmitted parallel to the polarization of the incident 

wave, and IO  the intensity of the wave transmitted perpendicular to polarization of the 

incident wave. These intensities depend on the angle θ , on the wavelength λ  of the light 
source, on the thickness L  of the thin plate, and on the absolute value of the difference of 
the refractive indices, n1 − n2 . This last quantity is called the birefringence of the material. 

The measurement of this quantity is the goal of this problem. Together with polarizers, 

birefringent materials are useful for the control of light polarization states. 

 

We point out here that the photodetector measures the intensity of the light incident on it, 

independent of its polarization.  

 
The dependence of IP (θ)  and IO (θ)  on the angle θ  is complicated due to other effects not 

considered, such as the absorption of the incident radiation by the mica. One can obtain, 

however, approximated but very simple expressions for the normalized intensities I P (θ)  and 
I O (θ) , defined as, 

 

I P (θ) = IP (θ)
IP (θ) + IO (θ)

  (2.1)  

 

and 

 

I O (θ) = IO (θ)
IP (θ) + IO (θ)

  (2.2)  

It can be shown that the normalized intensities are (approximately) given by, 

 

I P (θ) =1− 1
2

1− cos∆φ( )sin2(2θ)  (2.3) 

and 

 



I O (θ) = 1
2

1− cos∆φ( )sin2(2θ)   (2.4) 

 

where ∆φ  is the difference of phases of the parallel and perpendicular transmitted waves. 

This quantity is given by, 

 

∆φ = 2πL

λ
n1 − n2   (2.5) 

 

where L  is the thickness of the thin plate of mica, λ  the wavelength of the incident 
radiation and n1 − n2  the birefringence. 

 
 

 

EXPERIMENTAL SETUP 
 

Task 2.1 Experimental setup for measuring intensities. Design an experimental setup for 

measuring the intensities IP  and IO  of the transmitted wave, as a function of the angle θ  of 
any of the optical axes, as shown in Fig. 2.6. Do this by writing the LABELS of the different 

devices on the drawing of the optical table. Use the convention (+) and (-) for the direction 

of the polarizers. You can make additional simple drawings to help clarify your design.  

 

Task 2.1 a) Setup for IP  (0.5 points). 

Task 2.1 b) Setup for IO  (0.5 points). 

 

Laser beam alignment. Align the laser beam in such a way that it is parallel to the table and 

is incident on the center of the cylinder holding the mica. You may align by using one the 

white index cards to follow the path. Small adjustments can be made with the movable 

mirror. 

 

Photodetector and the multimeter. The photodetector produces a voltage as light impinges 

on it. Measure this voltage with the multimeter provided.  The voltage produced is linearly 

proportional to the intensity of the light. Thus, report the intensities as the voltage produced 

by the photodetector. Without any laser beam incident on the photodetector, you can 

measure the background light intensity of the detector. This should be less than 1 mV. Do 

not correct for this background when you perform the intensity measurements. 

 

WARNING: The laser beam is partially polarized but it is not known in which direction. 

Thus, to obtain polarized light with good intensity readings, place a polarizer with either its 

(+) or (–) axes vertically in such a way that you obtain the maximum transmitted intensity in 

the absence of any other optical device. 

 



MEASURING INTENSITIES 
 

Task 2.2 The scale for angle settings. The cylinder holding the mica has a regular 

graduation for settings of the angles. Write down the value in degrees of the smallest interval 

(i.e. between two black consecutive lines). (0.25 points).  

 

Finding (approximately) the zero of θ  and/or the location of the mica axes. To facilitate 

the analysis, it is very important that you find the appropriate zero of the angles. We suggest 

that, first, you identify the location of one of the mica axes, and call it Axis 1. It is almost 

sure that this position will not coincide with a graduation line on the cylinder.  Thus, 

consider the nearest graduation line in the mica cylinder as the provisional origin for the 

angles. Call θ  the angles measured from such an origin. Below you will be asked to provide 

a more accurate location of the zero of θ . 

 

Task 2.3 Measuring IP  and IO . Measure the intensities IP  and IO  for as many angles θ  as 
you consider necessary. Report your measurements in Table I. Try to make the 

measurements for IP  and IO  for the same setting of the cylinder with the mica, that is, for a 

fixed angle θ . (3.0 points). 
 

Task 2.4 Finding an appropriate zero for θ . The location of Axis 1 defines the zero of the 

angle θ . As mentioned above, it is mostly sure that the location of Axis 1 does not coincide 

with a graduation line on the mica cylinder. To find the zero of the angles, you may proceed 

either graphically or numerically. Recognize that the relationship near a maximum or a 

minimum may be approximated by a parabola where: 

 

I(θ ) ≈ aθ 2 + bθ + c  
 

and the minimum or maximum of the parabola is given by, 

            θ m = − b

2a
. 

 

Either of the above choices gives rise to a shift δθ  of all your values of θ  given in 
Table I of Task 2.3, such that they can now be written as angles θ  from the appropriate zero, 

θ = θ + δθ . Write down the value of the shift δθ  in degrees. (1.0 points). 
  

DATA ANALYSIS. 

 

Task 2.5 Choosing the appropriate variables. Choose I P (θ)  or I O (θ)  to make an analysis 

to find the difference of phases ∆φ . Identify the variables that you will use. (0.5 point). 

 

 

 

 



Task 2.6 Data analysis and the phase difference.  

 

• Use Table II to write down the values of the variables needed for their analysis. 

Make sure that you use the corrected values for the angles θ . Include uncertainties. 
Use graph paper to plot your variables. (1.0 points). 

 

• Perform an analysis of the data needed to obtain the phase difference ∆φ . Report 

your results including uncertainties. Write down any equations or formulas used in 

the analysis. Plot your results. (1.75 points). 

 

• Calculate the value of the phase difference∆φ  in radians, including its uncertainty. 

Find the value of the phase difference in the interval 0,π[ ]. (0.5 points). 
 

Task 2.7 Calculating the birefringence n1 − n2 . You may note that if you add 2Nπ  to the 

phase difference ∆φ , with N any integer, or if you change the sign of the phase, the values 

of the intensities are unchanged. However, the value of the birefringence n1 − n2  would 

change. Thus, to use the value ∆φ  found in Task 2.6 to correctly calculate the birefringence, 

you must consider the following: 

 

∆φ = 2πL

λ
n1 − n2         if        L < 82 ×10−6  m 

or 

2π − ∆φ = 2πL

λ
n1 − n2         if      L > 82 ×10−6  m  

 

 

where the value L  of the thickness of the slab of mica you used is written on the cylinder 

holding it. This number is given in micrometers (1 micrometer = 10
-6
 m). Assign 1×10−6m 

as the uncertainty for L . For the laser wavelength, you may use the value you found in 

Problem 1 or the average value between 620 ×10−9 m and 750 ×10−9  m, the reported range 

for red in the visible spectrum. Write down the values of L  and λ  as well as the 
birefringence n1 − n2  with its uncertainty. Include the formulas that you used to calculate 

the uncertainties. (1.0 points). 



THEORETICAL PROBLEM No. 1 

 

EVOLUTION OF THE EARTH-MOON SYSTEM 

 

Scientists can determine the distance Earth-Moon with great precision. They achieve 

this by bouncing a laser beam on special mirrors deposited on the Moon´s surface by 

astronauts in 1969, and measuring the round travel time of the light (see Figure 1). 

 

 

 
 

With these observations, they have directly measured that the Moon is slowly receding 

from the Earth. That is, the Earth-Moon distance is increasing with time. This is 

happening because due to tidal torques the Earth is transferring angular momentum to 

the Moon, see Figure 2. In this problem you will derive the basic parameters of the 

phenomenon. 

 

  

Figure 1. A laser beam sent 

from an observatory is used 

to measure accurately the 

distance between the Earth 

and the Moon. 



 
 

 

 

 

 

 

 

 

 

1. Conservation of Angular Momentum. 

 

Let 1L  be the present total angular momentum of the Earth-Moon system. Now, make 

the following assumptions: i) 1L  is the sum of the rotation of the Earth around its axis 

and the translation of the Moon in its orbit around the Earth only. ii) The Moon’s orbit 

is circular and the Moon can be taken as a point. iii) The Earth’s axis of rotation and the 

Moon’s axis of revolution are parallel. iv) To simplify the calculations, we take the 

motion to be around the center of the Earth and not the center of mass. Throughout the 

problem, all moments of inertia, torques and angular momenta are defined around the 

axis of the Earth. v) Ignore the influence of the Sun.  

 

1a Write down the equation for the present total angular momentum of the 

Earth-Moon system. Set this equation in terms of EI , the moment of 

inertia of the Earth; 1Eω , the present angular frequency of the Earth’s 

rotation; 1MI , the present moment of inertia of the Moon with respect to 

the Earth´s axis; and 1Mω , the present angular frequency of the Moon’s 

orbit. 

0.2 

 

This process of transfer of angular momentum will end when the period of rotation of 

the Earth and the period of revolution of the Moon around the Earth have the same 

duration. At this point the tidal bulges produced by the Moon on the Earth will be 

aligned with the line between the Moon and the Earth and the torque will disappear. 

 

 

Figure 2. The Moon’s gravity produces tidal deformations or “bulges” in the Earth. 

Because of the Earth’s rotation, the line that goes through the bulges is not aligned 

with the line between the Earth and the Moon. This misalignment produces a torque 

that transfers angular momentum from the Earth’s rotation to the Moon’s 

translation. The drawing is not to scale. 



1b Write down the equation for the final total angular momentum 2L of the 

Earth-Moon system. Make the same assumptions as in Question 1a. Set 

this equation in terms of EI , the moment of inertia of the Earth; 2ω , the 

final angular frequency of the Earth’s rotation and Moon’s translation; 

and 2MI , the final moment of inertia of the Moon. 

0.2 

 

 

1c Neglecting the contribution of the Earth´s rotation to the final total 

angular momentum, write down the equation that expresses the angular 

momentum conservation for this problem. 

0.3 

 

2. Final Separation and Final Angular Frequency of the Earth-Moon System. 

 

Assume that the gravitational equation for a circular orbit (of the Moon around the 

Earth) is always valid. Neglect the contribution of the Earth´s rotation to the final total 

angular momentum. 

 

2a Write down the gravitational equation for the circular orbit of the Moon 

around the Earth, at the final state, in terms of EM , 2ω , G and the final 

separation 2D  between the Earth and the Moon. EM  is the mass of the 

Earth and G  is the gravitational constant. 

0.2 

 

 

2b Write down the equation for the final separation 2D  between the Earth 

and the Moon in terms of the known parameters, 1L , the total angular 

momentum of the system, EM and MM , the masses of the Earth and 

Moon, respectively, and G . 

0.5 

 

2c Write down the equation for the final angular frequency 2ω  of the Earth-

Moon system in terms of the known parameters 1L , EM , MM  and G . 

0.5 

 

Below you will be asked to find the numerical values of 2D  and 2ω . For this you need 

to know the moment of inertia of the Earth.  

 

2d Write down the equation for the moment of inertia of the Earth EI  

assuming it is a sphere with inner density iρ  from the center to a radius 

ir , and with outer density oρ  from the radius ir  to the surface at a 

radius or  (see Figure 3).  

0.5 

 

 

 



  
 

 

 

 Determine the numerical values requested in this problem always to two significant 

digits. 

 

 

2e Evaluate the moment of inertia of the Earth EI , using 4103.1 ×=iρ kg m
-3
, 

6105.3 ×=ir m, 3100.4 ×=oρ  kg m
-3
, and 6104.6 ×=or m.  

0.2 

 

The masses of the Earth and Moon are 24100.6 ×=EM  kg and 22103.7 ×=MM kg, 

respectively. The present separation between the Earth and the Moon is 8

1 108.3 ×=D m. 

The present angular frequency of the Earth’s rotation is 5

1 103.7 −×=Eω s
-1
. The present 

angular frequency of the Moon’s translation around the Earth is 6

1 107.2 −×=Mω s
-1
, and 

the gravitational constant is 11107.6 −×=G m
3
 kg

-1
 s
-2
. 

 

 

2f Evaluate the numerical value of the total angular momentum of the 

system, 1L . 

0.2 

 

 

2g Find the final separation 2D in meters and in units of the present 

separation 1D . 

0.3 

 

 

2h Find the final angular frequency 2ω  in s
-1
, as well as the final duration of 

the day in units of present days. 

0.3 

 

 

Figure 3. The Earth as a sphere 

with two densities, 
iρ  and 

oρ . 

 



Verify that the assumption of neglecting the contribution of the Earth´s rotation to the 

final total angular momentum is justified by finding the ratio of the final angular 

momentum of the Earth to that of the Moon. This should be a small quantity. 

 

2i Find the ratio of the final angular momentum of the Earth to that of the 

Moon.  

 

0.2 

 

3. How much is the Moon receding per year? 

 

Now, you will find how much the Moon is receding from the Earth each year. For this, 

you will need to know the equation for the torque acting at present on the Moon. 

Assume that the tidal bulges can be approximated by two point masses, each of massm , 

located on the surface of the Earth, see Fig. 4. Let θ  be the angle between the line that 

goes through the bulges and the line that joins the centers of the Earth and the Moon.  

 

 
 

 
 

 

 

3a Find
cF , the magnitude of the force produced on the Moon by the closest 

point mass.  

 

0.4 

 

 

3b Find fF , the magnitude of the force produced on the Moon by the farthest  

point mass.   

0.4 

 

Figure 4.  Schematic diagram to estimate the torque produced on the Moon by the 

bulges on the Earth. The drawing is not to scale. 



You may now evaluate the torques produced by the point masses.  

 

3c Find the magnitude of
cτ , the torque produced by the closest point mass.  0.4 

 

3d Find the magnitude of fτ , the torque produced by the farthest point mass. 0.4 

 

3e Find the magnitude of the total torque τ  produced by the two masses. 

Since 1Dro <<  you should approximate your expression to lowest 

significant order in 
1/Dro . You may use that axx a +≈+ 1)1( , if 1<<x .   

1.0 

 

 

3f Calculate the numerical value of the total torque τ , taking into account 

that o3=θ  and that 16106.3 ×=m  kg  (note that this mass is of the order 

of 810− times the mass of the Earth). 

0.5 

 

Since the torque is the rate of change of angular momentum with time, find the increase 

in the distance Earth-Moon at present, per year. For this step, express the angular 

momentum of the Moon in terms of MM , EM , 1D  and G  only. 

 

3g Find the increase in the distance Earth-Moon at present, per year.  1.0 

 

Finally, estimate how much the length of the day is increasing each year. 

 

3h Find the decrease of 1Eω  per year and how much is the length of the day 

at present increasing each year.  

 

1.0 

 

4. Where is the energy going? 

 

In contrast to the angular momentum, that is conserved, the total (rotational plus 

gravitational) energy of the system is not. We will look into this in this last section. 

 

4a Write down an equation for the total (rotational plus gravitational) energy 

of the Earth-Moon system at present, E . Put this equation in terms of EI , 

1Eω  ,  MM , EM , 1D  and G  only. 

0.4 

 

4b Write down an equation for the change inE , E∆ , as a function of the 

changes in  1D  and in 1Eω . Evaluate the numerical value of E∆  for a 

year, using the values of changes in  1D  and in 1Eω found in questions 3g 

and 3h.  

0.4 



 

Verify that this loss of energy is consistent with an estimate for the energy dissipated as 

heat in the tides produced by the Moon on the Earth. Assume that the tides rise, on the 

average by 0.5 m, a layer of water =h   0.5 m deep that covers the surface of the Earth 

(for simplicity assume that all the surface of the Earth is covered with water). This 

happens twice a day. Further assume that 10% of this gravitational energy is dissipated 

as heat due to viscosity when the water descends. Take the density of water to be 
310=waterρ  kg m

-3
, and the gravitational acceleration on the surface of the Earth to be 

8.9=g  m s
-2
. 

 

4c What is the mass of this surface layer of water? 0.2 

 

4d Calculate how much energy is dissipated in a year? How does this 

compare with the energy lost per year by the Earth-Moon system at 

present?  

0.3 

 

 

 



THEORETICAL PROBLEM 2 

 

DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

The purpose of this problem is to develop a simple theory to understand the so-called 

“laser cooling” and “optical molasses” phenomena. This refers to the cooling of a beam 

of neutral atoms, typically alkaline, by counterpropagating laser beams with the same 

frequency. This is part of the Physics Nobel Prize awarded to S. Chu, P. Phillips and C. 

Cohen-Tannoudji in 1997. 

 

 
 

 

The image above shows sodium atoms (the bright spot in the center) trapped at the 
intersection of three orthogonal pairs of opposing laser beams. The trapping region is 
called “optical molasses” because the dissipative optical force resembles the viscous 

drag on a body moving through molasses. 

 

In this problem you will analyze the basic phenomenon of the interaction between a 

photon incident on an atom and the basis of the dissipative mechanism in one 

dimension. 

 

 

PART I: BASICS OF LASER COOLING 

 

Consider an atom of mass m  moving in the +x  direction with velocity v . For 
simplicity, we shall consider the problem to be one-dimensional, namely, we shall 

ignore the y  and z  directions (see figure 1). The atom has two internal energy levels. 
The energy of the lowest state is considered to be zero and the energy of the excited 

state to be   hω0, where π2/h=h . The atom is initially in the lowest state. A laser beam 

with frequency ωL  in the laboratory is directed in the −x  direction and it is incident on 
the atom. Quantum mechanically the laser is composed of a large number of photons, 

each with energy   hωL  and momentum   −hq. A photon can be absorbed by the atom and 
later spontaneously emitted; this emission can occur with equal probabilities along the 

+x  and −x  directions. Since the atom moves at non-relativistic speeds, v /c <<1 (with 
c  the speed of light) keep terms up to first order in this quantity only. Consider also 

1/ <<mvqh , namely, that the momentum of the atom is much larger than the 



momentum of a single photon. In writing your answers, keep only corrections linear in 

either of the above quantities. 

 

 
 

Fig.1 Sketch of an atom of mass m  with velocity v  in the +x  direction, colliding with a 
photon with energy   hωL  and momentum   −hq. The atom has two internal states with 
energy difference   hω0. 

 

Assume that the laser frequency ωL  is tuned such that, as seen by the moving atom, it is 

in resonance with the internal transition of the atom.  Answer the following questions:  

 

1. Absorption. 

 

1a Write down the resonance condition for the absorption of the photon.  0.2 

 

1b Write down the momentum pat  of the atom after absorption, as seen in the 

laboratory.  

0.2 

 

1c Write down the total energy εat  of the atom after absorption, as seen in the 

laboratory. 

0.2 

 

 

2. Spontaneous emission of a photon in the −x  direction. 
 

At some time after the absorption of the incident photon, the atom may emit a photon in 

the −x  direction.  
 

2a Write down the energy of the emitted photon, εph , after the emission 

process in the −x  direction, as seen in the laboratory.  

0.2 

 

2b Write down the momentum of the emitted photon pph , after the emission 

process in the −x  direction, as seen in the laboratory. 

0.2 

 



 

2c Write down the momentum of the atom pat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

2d Write down the total energy of the atom εat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

3. Spontaneous emission of a photon in the +x  direction.  
 

At some time after the absorption of the incident photon, the atom may instead emit  a 

photon in the x+  direction.  

 

3a Write down the energy of the emitted photon, εph , after the emission 

process in the x+  direction, as seen in the laboratory.  

0.2 

 

3b Write down the momentum of the emitted photon pph , after the emission 

process in the x+  direction, as seen in the laboratory. 

0.2 

 

 

3c Write down the momentum of the atom pat , after the emission process in 

the x+ direction, as seen in the laboratory. 

0.2 

 

 

3d Write down the total energy of the atom εat , after the emission process in 

the x+  direction, as seen in the laboratory. 

0.2 

 

 

4. Average emission after the absorption. 

 

The spontaneous emission of a photon in the x−  or  in the x+  directions occurs with 

the same probability. Taking this into account, answer the following questions. 

 

4a Write down the average energy of an emitted photon, εph , after the 

emission process. 

0.2 

 

4b Write down the average momentum of an emitted photon pph , after the 

emission process. 

0.2 

 

 

4c Write down the average total energy of the atom εat , after the emission 

process. 

0.2 



 

4d Write down the average momentum of the atom pat , after the emission 

process. 

0.2 

 

5. Energy and momentum transfer. 

 

Assuming a complete one-photon absorption-emission process only, as described 

above, there is a net average momentum and energy transfer between the laser radiation 

and the atom.  

 

5a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.2 

 

 

5b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.2 

 

6. Energy and momentum transfer by a laser beam along the +x  direction. 
 

Consider now that a laser beam of frequency ′ ω L  is incident on the atom along the +x  
direction, while the atom moves also in the +x  direction with velocity v . Assuming a  
resonance condition between the internal transition of the atom and the laser beam, as 

seen by the atom, answer the following questions: 

 

6a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.3 

 

 

6b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.3 

 

 

PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

Nature, however, imposes an inherent uncertainty in quantum processes. Thus, the fact 

that the atom can spontaneously emit a photon in a finite time after absorption, gives 

as a result that the resonance condition does not have to be obeyed exactly as in the 

discussion above. That is, the frequency of the laser beams ωL  and ′ ω L  may have any 
value and the absorption-emission process can still occur. These will happen with 

different (quantum) probabilities and, as one should expect, the maximum probability 

is found at the exact resonance condition. On the average, the time elapsed between a 

single process of absorption and emission is called the lifetime of the excited energy 

level of the atom and it is denoted byΓ−1. 

 

Consider a collection of N  atoms at rest in the laboratory frame of reference, and a 



laser beam of frequency ωL  incident on them. The atoms absorb and emit 

continuously such that there is, on average, Nexc  atoms in the excited state (and 

therefore, N − Nexc  atoms in the ground state). A quantum mechanical calculation 

yields the following result:  

Nexc = N
ΩR

2

ω0 −ωL( )2 + Γ2

4
+ 2ΩR

2

 

 

where ω0 is the resonance frequency of the atomic transition and ΩR  is the so-called 

Rabi frequency; ΩR
2  is proportional to the intensity of the laser beam. As mentioned 

above, you can see that this number is different from zero even if the resonance 

frequency ω0 is different from the frequency of the laser beamωL . An alternative way 

of expressing the previous result is that the number of absorption-emission processes 

per unit of time isNexcΓ . 
 

 

Consider the physical situation depicted in Figure 2, in which two counter propagating 

laser beams with the same but arbitrary frequency ωL  are incident on a gas of N  
atoms that move in the +x  direction with velocityv . 
 

 
Figure 2. Two counter propagating laser beams with the same but arbitrary frequency 

ωL  are incident on a gas of N  atoms that move in the +x  direction with velocityv .  
 

7. Force on the atomic beam by the lasers. 

 

7a With the information found so far, find the force that the lasers exert on 

the atomic beam. You should assume that qmv h>> . 

1.5 

 

8. Low velocity limit. 

 

Assume now that the velocity of the atoms is small enough, such that you can expand 

the force up to first order in v . 
 

8a Find an expression for the force found in Question (7a), in this limit. 1.5 

 

Using this result, you can find the conditions for speeding up, slowing down, or no 

effect at all on the atoms by the laser radiation. 

 



8b Write down the condition to obtain a positive force (speeding up the 

atoms). 

0.25 

 

 

8c Write down the condition to obtain a zero force. 0.25 

 

 

8d Write down the condition to obtain a negative force (slowing down the 

atoms). 

0.25 

 

8e Consider now that the atoms are moving with a velocity v−  (in the x−  

direction). Write down the condition to obtain a slowing down force on 

the atoms. 

0.25 

 

 

9. Optical molasses. 

 

In the case of a negative force, one obtains a frictional dissipative force. Assume that 

initially, at 0=t , the gas of atoms has velocity 0v . 

 

9a In the limit of low velocities, find the velocity of the atoms after the laser 

beams have been on for a timeτ .  
1.5 

 

 

9b Assume now that the gas of atoms is in thermal equilibrium at a 

temperatureT0. Find the temperature T  after the laser beams have been 
on for a timeτ . 

0.5 

 

This model does not allow you to go to arbitrarily low temperatures. 



THEORETICAL PROBLEM No. 3 

 

WHY ARE STARS SO LARGE? 

 

The stars are spheres of hot gas. Most of them shine because they are fusing hydrogen 

into helium in their central parts. In this problem we use concepts of both classical and 

quantum mechanics, as well as of  electrostatics and thermodynamics, to understand 

why stars have to be big enough to achieve this fusion process and also derive what 

would be the mass and radius of the smallest star that can fuse hydrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Our Sun, as most stars, shines 

as a result of thermonuclear fusion of 

hydrogen into helium in its central 

parts. 

USEFUL CONSTANTS 

Gravitational constant = 11107.6 −×=G  m
3
 kg

-1
 s
2 

Boltzmann´s constant = 23104.1 −×=k J K
-1 

Planck’s constant = 34106.6 −×=h  m
2
 kg s

-1
 

Mass of the proton = 27107.1 −×=pm kg 

Mass of the electron = 31101.9 −×=em kg 

Unit of electric charge = 19106.1 −×=q C 

Electric constant (vacuum permittivity) = 12

0 109.8 −×=ε  C
2 
N
-1 
m

-2 

Radius of the Sun = 8100.7 ×=SR m 

Mass of the Sun = 30100.2 ×=SM kg 



 

 

 

 

1. A classical estimate of the temperature at the center of the stars. 

 

Assume that the gas that forms the star is pure ionized hydrogen (electrons and protons 

in equal amounts), and that it behaves like an ideal gas. From the classical point of view, 

to fuse two protons, they need to get as close as 1510− m for the short range strong 

nuclear force, which is attractive, to become dominant. However, to bring them together 

they have to overcome first the repulsive action of Coulomb’s force. Assume classically 

that the two protons (taken to be point sources) are moving in an antiparallel way, each 

with velocity
rmsv , the root-mean-square (rms) velocity of the protons, in a one-

dimensional frontal collision.  

 

1a  What has to be the temperature of the gas,
cT , so that the distance of 

closest approach of the protons, cd , equals 1510− m? Give this and all 

numerical values in this problem up to two significant figures. 

1.5 

 

  

2. Finding that the previous temperature estimate is wrong. 

To check if the previous temperature estimate is reasonable, one needs an independent 

way of estimating the central temperature of a star. The structure of the stars is very 

complicated, but we can gain significant understanding making some assumptions. Stars 

are in equilibrium, that is, they do not expand or contract because the inward force of 

gravity is balanced by the outward force of pressure (see Figure 2). For a slab of gas the 

equation of hydrostatic equilibrium at a given distance r from the center of the star, is 

given by 

2r

MG

r

P rr ρ−=
∆
∆

, 

where P is the pressure of the gas, G  the gravitational constant, rM the mass of the star 

within a sphere of radius r , and rρ is the density of the gas in the slab.  

 



  

 

An order of magnitude estimate of the central temperature of the star can be obtained 

with values of the parameters at the center and at the surface of the star, making the 

following approximations: 

co PPP −≈∆ , 

where cP  and oP  are the pressures at the center and surface of the star, respectively. 

Since oc PP >> , we can assume that 

cPP −≈∆ . 

Within the same approximation, we can write 

Rr ≈∆ , 

where R is the total radius of the star, and 

MMM Rr =≈ , 

with M the total mass of the star. 

The density may be approximated by its value at the center, 

cr ρρ ≈ . 

You can assume that the pressure is that of an ideal gas. 

2a Find an equation for the temperature at the center of the star, cT , in terms 

of the radius and mass of the star and of physical constants only. 

0.5 

 

 

Figure 2. The stars 

are in hydrostatic 

equilibrium, with the 

pressure difference 

balancing gravity. 



We can use now the following prediction of this model as a criterion for its validity: 

  

2b Using the equation found in (2a) write down the ratio RM /  expected for 

a star in terms of physical constants and 
cT only.  

0.5 

 

2c Use the value of  cT  derived in section (1a) and find the numerical value 

of the ratio RM /  expected for a star.  

0.5 

 

2d Now, calculate the ratio )(/)( SunRSunM , and verify that this value is 

much smaller than the one found in (2c). 

0.5 

 

3. A quantum mechanical estimate of the temperature at the center of the 

stars 

 

The large discrepancy found in (2d) suggests that the classical estimate for cT obtained 

in (1a) is not correct. The solution to this discrepancy is found when we consider 

quantum mechanical effects, that tell us that the protons behave as waves and that a 

single proton is smeared on a size of the order of pλ , the de Broglie wavelength. This 

implies that if
cd , the distance of closest approach of the protons is of the order of pλ , 

the protons in a quantum mechanical sense overlap and can fuse.  

 

3a 
 Assuming that 

2/12

p

cd
λ

=  is the condition that allows fusion, for a proton 

with velocity rmsv , find an equation for cT in terms of physical constants 

only. 

1.0 

 

3b  Evaluate numerically the value of cT obtained in (3a).  0.5 

 

3c  Use the value of  cT  derived in (3b) to find the numerical value of the 

ratio RM /  expected for a star, using the formula derived in (2b). Verify 

that this value is quite similar to the ratio )(/)( SunRSunM  observed.  

0.5 

 

Indeed, stars in the so-called main sequence (fusing hydrogen) approximately do follow 

this ratio for a large range of masses. 

 

 



4. The mass/radius ratio of the stars. 

 

The previous agreement suggests that the quantum mechanical approach for estimating 

the temperature at the center of the Sun is correct.  

 

4a  Use the previous results to demonstrate that for any star fusing hydrogen, 

the ratio of mass M to radius R is the same and depends only on physical 

constants. Find the equation for the ratio RM / for stars fusing hydrogen.  

0.5 

 

5. The mass and radius of the smallest star. 

The result found in (4a) suggests that there could be stars of any mass as long as such a 

relationship is fulfilled; however, this is not true.  

The gas inside normal stars fusing hydrogen is known to behave approximately as an 

ideal gas. This means that ed , the typical separation between electrons is on the average 

larger that eλ , their typical de Broglie wavelength. If closer, the electrons would be in a 

so-called degenerate state and the stars would behave differently. Note the distinction in 
the ways we treat protons and electrons inside the star. For protons, their de Broglie 

waves should overlap closely as they collide in order to fuse, whereas for electrons their 

de Broglie waves should not overlap in order to remain as an ideal gas.   

The density in the stars increases with decreasing radius. Nevertheless, for this order-of-

magnitude estimate assume they are of uniform density. You may further use that 

ep mm >> . 

 

5a  Find an equation for en , the average electron number density inside the 

star. 

0.5 

 

5b  Find an equation for ed , the typical separation between electrons inside 

the star. 

0.5 

 

5c 
 Use the 

2/12

e
ed

λ≥  condition to write down an equation for the radius of 

the smallest normal star possible. Take the temperature at the center of the 

star as typical for all the stellar interior.  

1.5 

 



 

 

6. Fusing helium nuclei in older stars. 

 

As stars get older they will have fused most of the hydrogen in their cores into helium 

(He), so they are forced to start fusing helium into heavier elements in order to continue 

shining. A helium nucleus has two protons and two neutrons, so it has twice the charge 

and approximately four times the mass of a proton. We saw before that 
2/12

p

cd
λ

= is the 

condition for the protons to fuse.  

 

6a  Set the equivalent condition for helium nuclei and find )(Hevrms , the rms 

velocity of the helium nuclei and )(HeT , the temperature needed for 

helium fusion.  

0.5 

 

5d  Find the numerical value of the radius of the smallest normal star 

possible, both in meters and in units of solar radius.  

0.5 

5e  Find the numerical value of the mass of the smallest normal star possible, 

both in kg and in units of solar masses.  

0.5 
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